|
15本の直線でできる三角形の数は最高で65個なんだって。。。^^;
どうやって見つけるんだろか。。。?
http://mathworld.wolfram.com/KobonTriangle.html より Orz〜
「Kobon Fujimura asked for the largest number of nonoverlapping triangles that can be constructed using lines (Gardner 1983, p. 170). A Kobon triangle is therefore defined as one of the triangles constructed in such a way. The first few terms are 1, 2, 5, 7, 11, 15, 21, ... (Sloane's A006066).
It appears to be very difficult to find an analytic expression for the th term, although Saburo Tamura has proved an upper bound on N(n) of 画像:下 , where is the floor function (Eppstein). For , 3, ..., the first few upper limits are therefore 2, 5, 8, 11, 16, 21, 26, 33, ... (Sloane's A032765).
・・・
T. Suzuki (pers. comm., Oct. 2, 2005) found the above configuration for , which is maximal since it satisfies the upper bound of .」
奇数は一筆書きできるはずだけど、、、n=11 は違うんだ。。。
n=14 の図も載ってない。。。
見つけるのはとっても難しいのでしょうね。。。^^;
以下のサイトに詳しく載ってます Orz〜
http://www004.upp.so-net.ne.jp/s_honma/triangle/triangle2.htm
三角形の最大数
|