問題7707・・・ http://ddincrement.blog.shinobi.jp/未選択/giveup より 引用 Orz〜
4022個の数1,1,2,2,3,3,・・・,2011,2011をうまく一列に並べると、
1≦n≦2011を満たす全ての自然数nに対して、2つのnの間にはn個の数があるようにすることが出来るか。(mesler1021様)
解答
・わたしの…
312132,
23421314,
2534263541316,
まではできた…^^;v
10以上はないみたいなのね…
8のときってわかりますか…?
0を使っていいなら…
例の数列辞典に…以下のようなのが乗ってるのを見っけ ^^☆
| A108116 | | Base 10 weak Skolem-Langford numbers. | | +20
3 |
| | 2002, 131003, 231213, 300131, 312132, 420024, 12132003, 14130043, 15120025, 23121300, 23421314, 25121005, 25320035, 30023121, 31213200, 31413004, 34003141, 40031413, 41312432, 45001415, 45121425, 45300435, 50012152, 51410054, 52002151, 52412154, 53002352, 53400354, 61310036 (list; graph; refs; listen; history; text; internal format) |
| | OFFSET |
1,1
| | COMMENTS |
Self-describing numbers: between two digits "d" there are d digits.
a(n) has either 0 or 2 instances of any digit, hence even number of digits.
Largest element is a(20120) = 978416154798652002.
| | REFERENCES |
E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
| | LINKS |
| | EXAMPLE |
In "2002" there are 2 digits between the two 2's and 0 digits between the two 0's; in "131003" there is 1 digit between the two 1's, 3 digits between the two 3's and 0 digit between the two 0's.
| | CROSSREFS |
Base 10 strong Skolem-Langford numbers are in A132291.
|
|
|