|
sin(2π/5) sin(4π/5) sin(6π/5) sin(8π/5)=?
解答
・わたしの...
5倍角の公式・・・チェビシェフの方程式がsinとcosとで同じに表されるのが不思議...♪
sin5θ=16sin5θ−20sin3θ+5sinθ cos5θ=16cos5θ−20cos3θ+5cosθ から...
sinθ...θがπ/5,2π/5,3π/5,4π/5 のとき、sin5θ=0をいずれも満たす...
cosθ...θがπ/5,-2π/5,3π/5,-4π/5のとき、cos5θ=-1をいずれも満たす...
so...16cos5θ−20cos3θ+5cosθ+1=0
cosπ=-1
so...
sin(π/5) sin(2π/5) sin(3π/5) sin(4π/5)=5/16
cos(π/5) cos(-2π/5) cos(3π/5) cos(-4π/5)*(-1)
=cos(π/5) cos(2π/5) cos(3π/5) cos(4π/5)*(-1)
=-1/16
so...
cos(π/5) cos(2π/5) cos(3π/5) cos(4π/5)=1/16
{sin(π/5) sin(2π/5) sin(3π/5) sin(4π/5)}{cos(π/5) cos(2π/5) cos(3π/5) cos(4π/5)}
=(1/2)^4*{sin(2π/5)*sin(4π/5)*sin(6π/5)*sin(8π/5)}
=(1/2)^4*(5/16)*(1/16)
so...
sin(2π/5)*sin(4π/5)*sin(6π/5)*sin(8π/5)=5/16
そっか...
sin(6π/5)=-sin(π/5)
sin(8π/5)=-sin(3π/5)
だから...
sin(2π/5)*sin(4π/5)*sin(6π/5)*sin(8π/5)
=sin(-π/5) sin(2π/5) sin(-3π/5) sin(4π/5)
=sin(π/5) sin(2π/5) sin(3π/5) sin(4π/5)
=5/16 なのでしたわ... ^^;
cos(2π/5) cos(4π/5) cos(6π/5) cos(8π/5)
=cos(2π/5) cos(4π/5) cos(-π/5) cos(-3π/5)
=cos(π/5) cos(2π/5) cos(3π/5) cos(4π/5)
=1/16
とこちらも同じでしたわ...
複素平面で考えたら...
x1〜x4(5の倍数でなければ)は同じでしたか...
大した問題じゃじぇんじぇんなかったあるね Orz...
|

- >
- Yahoo!サービス
- >
- Yahoo!ブログ
- >
- 練習用


