|
問題2849の解答です ^^v
直径7の円の直径AB上にAQ:QB = 13:1 となる点Qが、円周上に P,R があり、∠Q=90度のとき、以下の問題に答えなさい。
(1) P,R が半円の 弧AB 上にあるとき,△PQR の最大と最小を求めてください。
(2) (1)において,P,R が半円ではなく円全体の円周上にある,とだけ変えた場合の,△PQR の最大と最小を求めてください。
・uchinyanさんのもの
まずは,真っ正直に,(1)と(2)が同時に解けるオールマイティの微分でやってみます。
円の中心を O(0,0),AB を x 軸とし,OA = OB = r,OQ = c,0 < c < r,RQ = a > 0,PQ = b > 0,∠RQB = x,0 <= x < 2π,とします。
すると,
R(a * cos(x) + c, a * sin(x))
P(b * cos(x + π/2) + c, b * sin(x + π/2)) = (- b * sin(x) + c, b * cos(x))
です。そこで,
(a * cos(x) + c)^2 + (a * sin(x))^2 = OR^2 = r^2
(- b * sin(x) + c)^2 + (b * cos(x))^2 = OP^2 = r^2
つまり,
a^2 + 2c * cos(x) * a - (r^2 - c^2) = 0
b^2 - 2c * sin(x) * b - (r^2 - c^2) = 0
a > 0,b > 0 なので,
a = - c * cos(x) + sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
b = c * sin(x) + sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))
そして,△PQR = S = S(x) とすると,
S(x) = ab/2 です。後は,S(x) を微分して調べればいいです。
dS/dx = 1/2 * (da/dx * b + a * db/dx)
ここで,
da/dx
= c * sin(x) - c^2 * cos(x) * sin(x)/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
= c * sin(x) * (- c * cos(x) + sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)))/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
= a * c * sin(x)/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
db/dx
= c * cos(x) + c^2 * sin(x) * cos(x)/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))
= c * cos(x) * (c * sin(x) + sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))
= b * c * cos(x)/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))
より,
dS/dx
= 1/2 * ab * c * (sin(x)/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) + cos(x)/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)))
= Sc * 1/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) * 1/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
* (sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)))
= Sc * 1/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) * 1/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) * f(x)
最後は,
f(x) = sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
とおきました。
Sc * 1/sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) * 1/sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) > 0 なので,
f(x) の正,負,0 を調べればいいです。一見これは,なかなか難しそうです。しかしよく見ると...
0 <= x < π/2 では
sin(x) >= 0,cos(x) > 0,f(x) > 0
π/2 <= x < 3π/4 では,
sin(x) > 0,cos(x) <= 0,|sin(x)| > |cos(x)|
sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
|sin(x)| * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > |cos(x)| * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > - cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) > 0
f(x) > 0
3π/4 <= x < π では,
sin(x) > 0,cos(x) < 0,|sin(x)| <= |cos(x)|,等号は x = 3π/4
sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
|sin(x)| * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= |cos(x)| * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= - cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) <= 0
f(x) <= 0,等号は x = 3π/4
π <= x < 3π/2 では,
sin(x) <= 0,cos(x) < 0,f(x) < 0
3π/2 <= x < 7π/4 では,
sin(x) < 0,cos(x) >= 0,|sin(x)| > |cos(x)|
sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
|sin(x)| * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > |cos(x)| * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
- sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) > cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) < 0
f(x) < 0
7π/4 <= x < 2π では,
sin(x) < 0,cos(x) > 0,|sin(x)| <= |cos(x)|,等号は x = 7π/4
sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
|sin(x)| * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= |cos(x)| * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
- sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) <= cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))
sin(x) * sqrt(c^2 * (sin(x))^2 + (r^2 - c^2)) + cos(x) * sqrt(c^2 * (cos(x))^2 + (r^2 - c^2)) >= 0
f(x) >= 0,等号は x = 7π/4
そこで,0 <= x < 2π で,
0 <= x < 3π/4 では,f(x) > 0,dS/dx > 0,S は単調増加
x = 3π/4 では,f(x) = 0,dS/dx = 0,S は極大かつ最大
3π/4 < x < 7π/4 では,f(x) < 0,dS/dx < 0,S は単調減少
x = 7π/4 では,f(x) = 0,dS/dx = 0,S は極小かつ最小
7π/4 < x < 2π では,f(x) > 0,dS/dx > 0,S は単調増加
になります。以上より,
S(x) = ab/2 = 1/2 * (- c * cos(x) + sqrt(c^2 * (cos(x))^2 + (r^2 - c^2))) * (c * sin(x) + sqrt(c^2 * (sin(x))^2 + (r^2 - c^2))) に注意して,
(1) 0 <= x <= π/2 で考えればいいので,S(x) は単調増加で,
S(0) <= S(x) <= S(π/2)
1/2 * (r - c) * sqrt(r^2 - c^2) <= △PQR <= 1/2 * (r + c) * sqrt(r^2 - c^2)
r = 7/2,c = 7/2 - 7/(13 + 1) = 3 より,
1/8 * sqrt(13) <= △PQR <= 13/8 * sqrt(13)
になります。
(2)
S(7π/4) <= S(x) <= S(3π/4)
1/2 * (r^2 - c * sqrt(2r^2 - c^2)) <= △PQR <= 1/2 * (r^2 + c * sqrt(2r^2 - c^2))
r = 7/2,c = 3 より,
(49 - 6 * sqrt(62))/8 <= △PQR <= (49 + 6 * sqrt(62))/8
になります。
なお,お気づきかと思いますが,全く同様にして,f(x) の二つ前の式の sin(x)/sqrt(c^2 * (cos(x))
|