アットランダム≒ブリコラージュ

「転ぶな、風邪ひくな、義理を欠け」(長寿の心得...岸信介) /「食う、寝る、出す、風呂」(在宅生活4つの柱)

過去の投稿日別表示

[ リスト | 詳細 ]

全1ページ

[1]

月の軌道...🌙

これは想像越えるくらい奇麗な軌道ね☆

イメージ 1


「要するに、地球は太陽の周りを円を描くようにして回っていて、、、
月は、12角形を描くようにして、太陽の周りを回っているということになるのだそうである。
その12角形は、地球の軌道より内側に入ることもあれば、外側に出ることもあり、、、、だから月は地球の周りを回っているように見えるということである。」

*で...1年=12ヶ月ってな月の単位のカウント/カレンダーが自然なものなのね☆...?
イメージ 2

もう眠いけど...このあいだふと考えたことをば...^^
暑い夏を避ける方法として...地球を少しばかり太陽から遠ざけることってできないのか知らんと...?
日本のことだけ考えたってどうしようもないことだし...気候の大変動を伴いそうだけど...
想像だけでも...^^;
太陽に面してるときだけ...海上だけでもいいから...空に向かって圧縮空気を噴出しちゃう...これを24時間ある規模で行うなら...少しずつでも...チリも積もればで...効果って現れないのかいなぁ〜って...?
でも...そのあとこうも考えた...
ヨットの上でそのマストに張られた帆に扇風機で風を送るのと同じことになるのかもって...^^;...?
どうなんだろ...
可能なら...
氷河気になったときは...
その逆に...夜の間だけ同じ操作をしちゃえば...太陽に近づけそうじゃん...^^v

サーチしたらば...
同じこと考えてる人っていらっしゃるものねぇ...^^;


どうも無理みたいある...
but...地球の自転は変えられる可能性があるらしい?
地軸ってのは変えられないんだろか...?

それもありました...^^;...
画像:amazon より Orz〜
イメージ 1

5264:約数の総和...

イメージ 1

問題5264(友人問)

正の整数nに対して、nの正の約数の総和をS(n)で表す。

このとき、S(6n)>=12S(n)を満たす3桁の正の整数nは何個あるか。


















解答

・わたしの...

n=2^a*3^b*5^c*7^d*11^e*...
S(n)=(1+2+2^2+...+2^a)(1+3+3^2+...+3^b)...
S(6n)=S(2^(a+1)*3^(b+1)*5^c*...)=(1+2+2^2+...+2^a+2^(a+1))(1+3+3^2+...+3^b+3^(b+1))...
(2^(a+1)-1)*((3^(b+1)-1)/2)>=12
(2^m-1)(3^k-1)>=24
2^m-1=1,3,7,15,31,63,127,255,511
3^k-1=2,8,26,80, 242,728
これらの積で条件を満たすものは...
1x26,80,242,728
3x8,26,80,242
7x8,26,80
15x2,8,26
31x2,8
63x2,8
127x2
255x2

このなかで、3桁であるような 5^p,7^q,11^r,...らの積のものを考えればいいはず...
今はここまで...もう眠い...Zzzz...Orz...

またまたまた間違ってた...^^;;;...Orz〜
鍵コメ様からのもの Orz〜

「(2^(a+1)-1)*((3^(b+1)-1)/2)>=12」のところが変だと思います.
(2^(a+2)-1)*(3^(b+2)-1)/2>=12*(2^(a+1)-1)*(3^(b+1)-1)/2
となるはずで,ここで,2^a=A,3^b=Bとおけば,
(4A-1)(9B-1)>=12(2A-1)(3B-1)
36AB-20A-27B+11<=0
(36B-20)A+(-27B+11)<=0
となり,A>=1,B>=1なので,
(36B-20)A+(-27B+11)>=(36B-20)・1+(-27B+11)=9B-9>=0.
これより,A=B=1が得られます.

実は,6nの約数はすべて,(6の約数)*(nの約数)の形に表され,
S(6)=12 より,S(6n)<=12S(n) …[*]です.
ここで,6とnが互いに素でない場合,その最大公約数gは,
「6の約数1とnの約数gの積」とも「6の約数gとnの約数1の積」とも表され,
[*] の等号は成り立たなくなります.
よって,S(6n)>=12S(n)となるのは,
nが6と互いに素の場合に限定されます。

後半部の詳しい解説を頂戴しました〜m(_ _)m〜☆
例えば,n=35のときについて,
35の約数は「1,5,7,35」であり,
6*35 の約数は,「1,5,7,35」に加えて,
2倍した「2,10,14,70」,3倍した「3,15,21,105」,6倍した「6,30,42,210」
があるので,
S(6*35)=S(35)+2S(35)+3S(35)+6S(35)=12S(35)
となります.
一方,n=10 のときについて,
10の約数は「1,2,5,10」であり,
6*10 の約数は「1,2,5,10」以外に,
2倍した「2,4,10,20」,3倍した「3,6,15,30」,6倍した「6,12,30,60」
が考えられますが,見ての通り,重複があるので,
S(6*10)<12S(10)
となります.

重複があるのは,nと6が互いに素でないときですね.


*そっかぁ〜♪...鈍いわたしにも了解できました ^^;v...Orz〜


*たしかに...抜けてましたぁ...^^;
途中の式変形も巧みの技ね☆
A=B=1 つまり...n は2,3を素因数にもたないってことから求めてみます...^^

(999-99)/2=450
(999-99)/3=300
(999-99)/6=150

けっきょく...
450+300-150=600
(999-99)-600=300

ってなるんだ!!

*最初に答を頂いた鍵コメ様の通りになりました〜m(_ _)m〜
友人からの解答を送ってもらいますね ^^v

久々の優勝♪

イメージ 1

残暑残暑でもういい残暑のなか...今回からはみなさんの要望で、10:00 amスタートの恒例囲碁大会の始まり始まり ^^...ピーカンの灼熱シーズンにゃ...碁会所での囲碁大会は熱中症の心配もなく...
好きなだけ自分の時間を過ごせる夏の避暑地/桃源郷かもね?...
今回もエントリーできない方と、入れ替わりにニューカマーの参加で人数は相殺されいつもと同じくらいの総勢10名で夏の陣のバトルが繰り広げられました☆
いろんな方との盤を挟んだ手談は周りの喧噪から隔離され...集中するほどに...頭の中は静寂(しじま)の世界になってるはずなんだけど...?...やはり我知らずそこかしこからぼやきの火の手が上がってる...
囲碁3段、口は7段(口八丁ってくらいだから8段か ^^)という猛者連相手には...iPodでアルファ波を増やしてくれる曲でも聞いてなきゃいけないかも〜...?

空中戦の得意な先生に「さすが撃墜王ですね ^^」って横から感想述べてると...
ご本人から...「わたしゃ...今日は墜落王よ!!」って自虐の返答あり...^^;...

最後にミスっちゃった方が負けるのは囲碁に限らないんだけど...だいたい欲どおしい方がご無体な目に遭わされちゃうのも真理のようで...相手にも地を差し上げるという平和的態度が勝率はいいもの...?
強い方の説では...弱い石を作らず...相手に放っといたら取りますよぉ〜って圧力をかけて自然に自分の領地を増やすのがコツだといわれるし、その意味はよくわかるんだけど...何せ欲が、目の前の物に目が眩んじゃうし...それを取られまい取られまいとしてるうちにけっきょくもっと大きな陣地を取られてることになってしまう...割に合わない取引になってる...大局的に捨てるべき石と捨てちゃならない種石の区別が冷静に気づけている限り...なかなか負けないってゲーム...これって...地勢的な領土問題にも通じてるかもねぇ...?
人間と違うのは...心臓が止まってるような石でも...ゾンビのように動けることね ^^;
しかも...ピノキオじゃないけど...生き返れたりできちゃう...上手い蘇生術が駆使されたらば...人間に戻れちゃう...魔法/マジックを見てるよう...^^...わたしゃ...瞬間催眠術を覚えたいと思ってるけど...たいていはいつも上手にかけられてる気がするのはわたしだけだろか...^^;...?

イメージ 2

今日はたまたま運良く何局も相手の強烈なレシーブを拾いまくっての...逆転勝ちで...4勝2敗で踏ん張れたのが幸いし...同率3名という混戦でしたが...そのお二方に勝ってたっていうルールでの...
形容するなら...「棚からぼた餅」みたいに転がり込んだ優勝でした♪

みなさんお疲れsummer〜Orz〜次回の冬の陣でまた相見えましょうぞ!!

イメージ 3

囲碁っておもろいぞぉ〜〜〜☆☆☆

全1ページ

[1]


.
スモークマン
スモークマン
男性 / A型
人気度
Yahoo!ブログヘルプ - ブログ人気度について
友だち(1)
  • ヤドカリ
友だち一覧
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

過去の記事一覧

検索 検索

Yahoo!からのお知らせ

よしもとブログランキング

もっと見る

[PR]お得情報

ふるさと納税サイト≪さとふる≫
実質2000円で好きなお礼品を選べる
毎日人気ランキング更新中!

その他のキャンペーン


プライバシー -  利用規約 -  メディアステートメント -  ガイドライン -  順守事項 -  ご意見・ご要望 -  ヘルプ・お問い合わせ

Copyright (C) 2019 Yahoo Japan Corporation. All Rights Reserved.

みんなの更新記事