(a-1)(b-1)(c-1)がabc-1の約数となるような
整数 a,b,c, 1<a<b<cを全て求めよ。
解答
・わたしの...
a-1=x>=1
b-1=y>=2
c-1=z>=3
(x+1)(y+1)(z+1)/(xyz)
=(xyz+xy+yz+zx+x+y+z)/(xyz)
=1+1/x+1/y+1/z+1/(xy)+1/(yz)+1/(zx)
1/x+1/y+1/z+1/(xy)+1/(yz)+1/(zx)=<1+1/2+1/3+1/2+1/3+1/6=17/6
so...
1/x+1/y+1/z+1/(xy)+1/(yz)+1/(zx)=1 or 2
3/x+3/x^2>1 or 2
x<4 or x<3
x=1,2,3
x=1
1+1/y+1/z+1/y+1/z+1/(yz)=1...なし
x=2
1/2+1/y+1/z+1/(2y)+1/(2z)+1/(yz)=1
1/2+2/y+1/y+1/y^2>1
3/y+1/y^2>1/2...y<7
y=4,5,6
y=4,1/2+1/y+1/z+1/(2y)+1/(2z)+1/(yz)=1...z=14
y=5,1/2+1/y+1/z+1/(2y)+1/(2z)+1/(yz)=1...z=17/2
y=6,1/2+1/y+1/z+1/(2y)+1/(2z)+1/(yz)=1...z=20/3
1/3+1/y+1/z+1/(3y)+1/(3z)+1/(yz)=1
1/3+2/y+2/(3y)+1/y^2>1
8/(3y)+1/y^2>2/3...なし
x=3
1/3+1/y+1/z+1/(3y)+1/(3z)+1/(yz)=1
2/y+2/(3y)+1/y^2>2/3
8/(3y)+1/y^2>2/3
y<5
y=4
1/3+1/4+1/z+1/12+1/(3z)+1/(4z)=1...z=19/4
x=1,2
x=1
1+1/y+1/z+1/y+1/z+1/(yz)=2
3/y+1/y^2>1
y<4
y=2,3
y=2,1+1+1/z+1/(2z)>2 でなし
y=3,1+2/3+2/z+1/(3z)=2...z=7
x=2
1/2+1/y+1/z+1/(2y)+1/(2z)+1/(yz)=2
1/2+2/y+2/(2y)+1/y^2>2
3/y+1/y^2>3/2
y<3 でなし
けっきょく...
(x,y,z)=(2,4,14),(1,3,7)
(a,b,c)=(3,5,15),(2,4,8)
あぁ...面倒 ^^;;;