With its high-quality Plate-to-VIN Matching service, DMVconnect enables Toll Authorities to turn out-of-state license plates into people, making invoicing and violation processing possible.

Most Toll Authorities have the resources necessary to obtain owner registration information for in-state license plates. However, thousands of video tolls and toll violations go uncollected because of the limited or difficult access to out-of-state license plate owner registration information. The DMVconnect service closes this information gap by providing a single interface to obtain this hard-to-acquire data from out-of-state DMVs, enabling Toll Authorities to collect fines from ellusive out-of-state toll violators.
DMVconnect leverages ATS’ experience working with DMVs across North America as the largest US issuer of photo enforced citations. When ATS Red-Light Safety Cameras or Speed Compliance Cameras capture violating vehicles, our internal systems are able to rapidly connect with the appropriate DMV and obtain the vehicle’s registration information.
On the Public Safety side, ATS processes more than 1.2 million violations every month, which means: When it comes to working with DMVs across North America, we know what we’re doing.

Key Benefits of DMVconnect

  • Access to owner registration information for vehicles throughout the United States and Canada, including government plates.
  • Increase revenue while decreasing accounts receivables.
  • Process 80 percent to 90 percent of violations incurred by vehicles with out-of-state license plates that currently go uncollected.
  • Simple, quick, low-cost implementation, with no additional equipment required.
  • Secure data transfer utilizing existing Internet connection.
  • Yield an almost immediate return on investment.
  • Optional skip-tracing services available.

How DMVconnect Works

イメージ 1

Step 1: When a vehicle with out-of-state license plates unlawfully or accidentally passes through a cashless toll, the Toll Authority adds the vehicle’s license plate details to an electronic file where the event assigned a unique transaction number.
Step 2: Through a secure Internet connection, the Toll Authority submits the out-of-state violating vehicle file to DMVconnect.
Step 3: DMVconnect automatically converts the data file to the format required by each DMV database and submits each violation event to the appropriate DMV.
Step 4: Vehicle owner registration information is secured from the DMVs for as many violating vehicles as possible (typically, 80 percent to 90 percent).
Step 5: DMVconnect automatically verifies the owner registration information against a Change of Address database to ensure accuracy. Skip-tracing services also can be performed.
Step 6: The vehicle owner registration information for out-of-state violating vehicles is sent back to the Toll Authority via the secure Internet connection.

A meteorologist explains why the sky is sometimes so colorful.
Red Sky at Night: The Science of Sunsets
イメージ 2
freehdw.com Perfect Contrast

イメージ 13イメージ 14
NOAA 8月17日の記事によれば、先月7月は世界中で記録的な暑さだったようだ。

In simple terms, what makes a good sunset happen?
I guess it depends on how you define "good," but I'm going to assume you mean a strikingly colorful one, where the colors are spectrally pure—say, vivid orange or red—as opposed to a more muted palette.

何をもって綺麗とするかの定義によりますが、純粋なオレンジや赤の光スペクトルで表される驚くほど色鮮やかな夕焼けだとして説明します。 それは色彩が弱められた夕空とは逆のものですね。

イメージ 12
crafthubs.com Beautiful Sunsets CG?

Keep in mind that what we see with our human eyes is just a tiny part of the electromagnetic radiation that's given off by the sun. That radiation contains a wide spectrum of wavelengths, but your eyes are only sensitive to certain parts of it: the so-called visible wavelengths. Different colors are associated with different wavelengths.

先ず、人間の眼に映るのは、太陽が放射した電磁波のごく一部にすぎないことを頭に入れておいて下さい。 波長は広範囲に渡りますが、眼で感知できるのは可視波長と呼ばれる範囲だけです。 それぞれの色は、波長に関連しています。

イメージ 3
astro.cornell.edu Electromagnetic spectrum
Humans see just a tiny part of the electromagnetic radiation from the sun.

And depending on what happened to the light before it got to you, some of those visible wavelengths don't even reach your eye. Portions of it are absorbed and filtered out in the atmosphere. So really, there's a good sunset every night; we just can't always see it from the ground.


ブログ記事 アメリカ縦横断 20131102 #22 より転載。

You may have noticed this if you've ever taken off in an airplane at sunset. It might not look like anything special from the ground, just a whitish-pink sky, because you're still within the atmosphere's "boundary layer." That's where all the large particles are trapped, things like dust and pollution. But as the plane gets above the boundary layer, into cleaner air, suddenly the sunset looks very vivid. It's all a matter of perspective.

イメージ 4
The view looks very vivid from the high altitude

Okay, so let's talk about the typical Earthling's perspective. Why do we see more orange and red colors in the sky during sunrise and sunset than we do at other times of day?
When a beam of sunlight strikes a molecule in the atmosphere, what's called "scattering" occurs, sending some of the light's wavelengths off in different directions. This happens millions of times before that beam gets to your eyeball at sunset.

典型的な地上からの視点で話しをしましょう。 ほかの時間帯に比べ日の出や日没時の空が、よりオレンジや赤の色に染まって見えるのは何故でしょう?
太陽光線が大気中の分子に衝突すると、“散乱”と呼ばれる現象が起こり、一部の波長が四方八方に散らばります。 日没時は、これが数限りなく繰り返された末に、人の眼に太陽光が届きます。

イメージ 5
The angle through which sunlight in the atmosphere is scattered by
 molecules of the constituent gases varies inversely as the fourth power
 of the wavelength; hence, blue light, which is at the short wavelength end of
 the visible spectrum, will be scattered much more strongly than
 will the long wavelength red light. This results in the blue colour of the sky.
レイリー散乱(Rayleigh Scattering)とは、光の波長(400〜700nm)よりも
小さいサイズの粒子(窒素、酸素分子等 約150pm=0.15nm= 0.00015µm)
による光の散乱である。 典型的な現象は気体中の散乱であり、太陽光の

The two main molecules in air, oxygen and nitrogen, are very small compared to the wavelengths of the incoming sunlight—about a thousand times smaller. That means that they preferentially scatter the shortest wavelengths, which are the blues and purples. Basically, that's why the daytime sky is blue. The daytime sky would actually look purple to humans were it not for the fact that the sensitivity of our eyes peaks in the middle [green] part of the spectrum—that is, closer to blue than to purple.

大気中の主な分子は酸素と窒素ですが、これらは極めて微小で、太陽光の波長の1000分の1ほどしかありません。 つまり、色の中でも波長の短い青と紫から先に、これらの分子に衝突し散乱していきます。昼間、空が青く見えるのは、これが理由です。 昼間の空は、本当は最も波長の短い紫色なのに、人間にはそうは見えません。 これは、人の眼の感度がスペクトル中間位置の緑で最高値になるからです。 紫よりも青に近い波長の感度が高いから、空が青く見えるのです。

イメージ 6
quora.com Human Eye Spectral Sensitivity
Humans see the blue sky but Bees see the purple sky.

But at sunset, the light takes a much longer path through the atmosphere to your eye than it did at noon, when the sun was right overhead. And that is enough to make a big difference as far as our human eyes are concerned. It means that much of the blue has scattered out long before the light reaches us. The blues could be somewhere over the West Coast, leaving a disproportionate amount of oranges and reds as that beam of light hits the East Coast.

しかし日没時は、太陽が真上にある日中に比べ、太陽光が大気層を通過して人の眼に届くまでの距離が長くなります。 人間の眼で光を捉える以上、この距離は大きな差異となって眼に映ります。 つまり、波長の短い青は、地上に届く頃には、殆どが散乱して消滅するのです。 アメリカ西海岸では青も含まれていた光線だったのが、オレンジと赤しか残っていない不均衡な光線となり、東海岸に到達します。

イメージ 16
thesciencegeek.org Why is the Sky Blue?

So the same ray of sunlight is hitting people in both the Rockies and the Appalachians? Basically, the East gets the West's leftovers at sunset?
Yes, I think a lot of people don't realize that. Everything is connected. And as humans, we like to think color is concrete: "Oh, that's a blue sky," or "That's a brown table." But the colors you see depend on the light's path before it got to you, how the object you are viewing reflects that light, and what your eyes are sensitive to. Absolutes don't really exist in color perception. It's rather disquieting when really you start thinking about it!

では、大陸西部のロッキー山脈と東部のアパラチア山脈のどちらにいても注がれる太陽光は同じですか? 基本的に日没時に東部に届く光は西部の残りもの、ということですか?
そのとおりです。多くの人は、それに気付いていないと思います。 全ては関連しているのです。 そして人間として、私たちは物に色が着いていると考えがちです。 「あぁ、青空だ」や「あれは茶色の台だ」と。 しかし、色の見え方は、光が地上に到達する距離と、対象物がその光をどう反射するか、更にはその光に対する人の眼の感度によって変わってきます。 色の見え方に絶対的な基準など無いのです。 こんな事を考え始めたら、何だか不安になりますね。

ブログ記事 アメリカ縦横断 20131118 #38 より転載。

Do dust and air pollution make sunsets more dramatic?
No, you often hear that, but—assuming you mean typical pollution in the lower atmosphere—it's a myth. It's actually the opposite: Large particles in the lower atmosphere tend to mute and muddy the colors because they absorb more light and scatter all the wavelengths more or less equally, so you don't get that dramatic filtering effect. In areas with a lot of haze, you don't typically see the types of sunsets that are likely to appear on a wall calendar—or in, say, National Geographic.

いいえ。 よく耳にする話ですが、下層大気における一般的な汚染に限って言えば、これは俗説に過ぎません。 実際はその逆で、大気の下層に大きな粒子があると光は吸収されやすくなり、全ての波長が多かれ少なかれ不規則に拡散されることから、色が濁ったり薄れたりする傾向になります。 つまり、ドラマチックな光のフィルタリング効果は得られません。 霞が掛かりやすい場所では、カレンダーの写真になるような夕焼けは通常見られません。

イメージ 7
ブログ記事 アメリカ縦横断 20131102 #22 より転載。

Do the seasons affect sunsets?
You see bright ones in the fall and winter particularly, especially in the East, because the air along the path of the ray of sunlight tends to be dryer and cleaner.
I grew up in Baltimore, and this is part of why I got interested in weather. I would wonder: Why is the sunset so pretty tonight? And there weren't answers to questions like this in standard weather books, because it's more about physics than forecasting.

特にアメリカ東部では秋と冬にひときわ鮮やかな夕焼けが見られますが、これは太陽光が通過する大気が乾燥し澄んでいる事が多いためです。 ボルチモアで育った事は、私が気象に興味を持った一因にもなりました。 なぜ今日の夕陽は素晴らしいんだろう?と不思議に思っていました。  天気予報と言うよりは物理学に近い事柄なので、標準的な気象本には、この様な質問の答えは掲載されていませんでした。

イメージ 8
washington.edu Moving forward

Speaking of forecasting, what about the saying: "Red sky at night, sailor's delight; red sky in morning, sailors take warning." Any scientific truth to that?
Absolutely. Those spectrally pure colors are telling you there's a sizable swath of clear air off to your west that's likely to be over you the next day.

確かに、その通りなのです。 スペクトルが純粋な色であるという事は、かなり広範囲に渡って澄んだ空気が西側にあり、それが翌日こちらにやってくる可能性が高い事を示しています。

ブログ記事 アメリカ縦横断 20131031 #20 より転載。

So conversely, could local weather forecasters predict a pretty sunset?
Yeah, you can forecast them to a certain degree. I guess it's a question of who cares—maybe filmmakers or photographers would find that information useful, but most people just want to know if it's going to rain or not.

はい、ある程度は予測できます。 ですが、このような情報を有難がるのは、おそらく映画監督かカメラマンくらいでしょう。 殆どの人は、明日雨が降るか否かが分かれば、それで十分でしょうね。

イメージ 9

Why are sunsets sometimes more dramatic after a major storm?
There's often a slanting band of clouds on the back side of the departing weather system, and that can act as a sort of projection screen for the low-sun colors, better than a horizontal band would. The slant means it captures more of the orange and red light, and if the cloud is thin enough, it will reflect those colors down to you. Also, storms wash a lot of the big particles out of the air.

ある一連の気象系から乖離した裏側の場所では、度々傾斜した帯状の雲が現れます。 それが低い位置にある太陽の色にあたかも投影幕のような働きをします。 これは、水平の雲よりも良い効果をもたらします。 斜めと言う事は、よりオレンジや赤色の光を捕らえ、雲が十分に薄ければ色を反射して地上に届けるのです。 そして嵐が大きな粒子を大気から洗い落とす事も理由の一つですね。

イメージ 15
The Weather Network After the Storms

Is it true that by the time we see a sunset, the sun is actually already gone?
Yes, true sunset occurs a minute or so before you see the sun disappear. What you see is a kind of mirage; the light is getting bent around the horizon by the effect of refraction.

そのとおりです。 実際には、我々が日没を目にする1分ほど前に太陽は沈んでしまっています。 見えているのは一種の幻影です。屈折効果により光が地平線付近に溜まっているのです。

イメージ 10
wall.alphacoders.com Artistic / Sunset

Sounds like there's a lot of science to sunsets, but it's also a very subjective experience.
Yes. Our eyes are sensitive to a very tiny part of the spectrum of the sun's wavelengths, and that's responsible for the way we see our environment. Other creatures seem able to see the ultraviolet area of the spectrum. We can only see a tiny part of what's going on.

はい。 人間の眼は太陽光の波長スペクトルのごく一部しか感知することができず、このことが周囲の見え方を決定付けています。 中には紫外線域を見ることが出来る生物もいるようですが、人間には世の中で起きている事象のほんのわずかしか見えていないのです。

イメージ 11
enWiki Nectar guide

So a butterfly or a reindeer, which can perceive ultraviolet light, might be seeing a different, perhaps more colorful sunset than we do?
Absolutely. The more you look at things, the more you realize how unique your own experience is as a human on this planet, at this particular place and time.

蝶やトナカイは紫外線を知覚できるので、我々とは違う世界を見ていますよね。 と言う事は、もっと素晴らしい夕焼けを見ているのですか?
その通りです。 物事を深堀していくと、今、正に、この惑星の人類が体験している事柄は、非常に特殊なものだと言う事が分かります。