私の記憶法と速算法

連絡先:あすみが丘プロダクティブFAX:043-205-6882.メールはkiokuho0511@yahoo.co.jpです。

全体表示

[ リスト ]

これまでいろいろな方法を紹介しましたが、
ここで、再度まとめてみます。

1)「10の位がおなじで1の位の合計が10」になれば、
−(10の位の数)x(10の位の数+1)を100の位に書く
−1の位の数をかける
(どうも、この順序のほうがやりやすいようです。)

例) 38X32 
         12   ← 3X4
           16 ← 8X2
         −−−−
         1216

2)「10の位がおなじで1の位の合計が10にならない」ものは
−一方の数にもう一方の1の位の数をたして、10の位の数をかけて10の位にたす
−1の位をかける
(どうも、この順序のほうがやりやすいようです。)

例) 43X46
         196  ← (43+6)X4
           18 ←  3X6
         −−−−
         1978

とまとめられます。(累乗も2)のやりかたに同じ)

そして、
3)100に近い数字のかけ算は100との差を計算する

例) 97X92
   −3 −8    24  ← (−3)X(−8)
           89   ←  97−8(または92−3)
           −−−−
           8924  

(81から99)X(81から99)あたりは、このやり方がいいと思われます。

4)10の位が違っている場合は、
−1の位のかけ算をし、
−内側と外側のかけ算をし、
−10の位のかけ算を行う
方法が第11回にあります。
第12回では、この方法を使っていかにも暗算をしているように見せる方法を書きました。

たとえば、74x38は
−1の位のかけ算をし、        4x8  =  32
−内側と外側のかけ算をし、    4x3   = 12
                      7x8   = 56 
−10の位のかけ算を行う     7x3    =21
                            −−−−
                             2812

   
なのですが、本日次のような方法を紹介されました。

5)「10の位が同じものの数のかけ算と残りの数のかけ算に分割して合計する」
上の例を使って説明すると、
74=34+40なので、
74x38=34x38+40x38
     =1292 +1520 =  2812

2)のやり方に慣れた人は4)より5)の方が速くできるそうです。
ただ、4)は検算に使うといいと思います。 

ということで、今までいろいろなやり方を紹介しましたが、
今回で一応一区切りです。

閉じる コメント(2)

顔アイコン

32×38=(30+2)(40−2)=1200+2・10−4=1200+20−4=
1200+16=1216なんですね。

それから、
ab・acとして ab<acとして b+c=10とすれば、

ab・ac=(10a+b)(10a+10−b)
=100a・a+100a−10ab−10ab+10b−b・b
=a・(a+1)×100+b(10−b)
=(10の位の数)x(10の位の数+1)を100の位に書き、1の位の数をかけたものを書くとなるのですね。

数学とは次を考える事

として、

ヴェーダ数学についてコメントしたら、

このページの紹介がありました。

2008/4/17(木) 午後 1:25 待ち人

顔アイコン

第28回に説明の画像をつけましたので、参照してください。第28回に トラックバックをつけました。

2008/4/29(火) 午前 11:14 [ kio*uh*0511 ]

開く トラックバック(2)


.
kio*uh*0511
kio*uh*0511
男性 / 非公開
人気度
Yahoo!ブログヘルプ - ブログ人気度について
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

最新の画像つき記事一覧

Yahoo!からのお知らせ

よしもとブログランキング

もっと見る

プライバシー -  利用規約 -  メディアステートメント -  ガイドライン -  順守事項 -  ご意見・ご要望 -  ヘルプ・お問い合わせ

Copyright (C) 2019 Yahoo Japan Corporation. All Rights Reserved.

みんなの更新記事