FA²°¤µ¤ó¤ÎÆüµ­

¥Þ¥¶¡¼¥Æ¥ì¥µ¤Î¤³¤È¤Ð ´Î¿´¤Ê¤Î¤Ï¡¢¤É¤ì¤À¤±¤Î¤³¤È¤ò¤·¤¿¤«¤Ç¤Ï¤Ê¤¯¡¢¤¢¤Ê¤¿¤Î¹Ô¤¤¤Ë¤É¤ì¤À¤±°¦¤ò¤³¤á¤¿¤«¤Ê¤Î¤Ç¤¹

Æüµ­

[ ¥ê¥¹¥È | ¾ÜºÙ ]

µ­»ö¸¡º÷
¸¡º÷

Á´29¥Ú¡¼¥¸

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

[ ¼¡¤Î¥Ú¡¼¥¸ ]

¡¡·»¤Ë¥¿¥À·ô¤ò¤â¤é¤Ã¤¿¤Î¤Ç¡¢¤ª¤È¤È¤¤Ë­ÅÄÈþ½Ñ´Û¤Ë¹Ô¤­¥Õ¥§¥ë¥á¡¼¥ë¤ò¸«¤Æ¤­¤Þ¤·¤¿¡£
´¶Æ°¤Ç¤·¤¿¡£¥Õ¥§¥ë¥á¡¼¥ë¤Ï¡¢¸½Â¸¤¹¤ëºîÉÊ¿ô¤¬¾¯¤Ê¤¯¡¢33¤«¤é36ÅÀ¤°¤é¤¤¤·¤«¤Ê¤¤¤è¤¦¤Ç¤¹¤¬¡¢º£²óŸ¼¨¤µ¤ì¤Æ¤¤¤¿¡ÖÃÏÍý³Ø¼Ô¡×¤Ï¤È¤Æ¤â¤è¤«¤Ã¤¿¤Ç¤¹¡£°ì½ï¤ËŸ¼¨¤µ¤ì¤Æ¤¤¤¿¤½¤ÎÅö»þ¤ÎÌý³¨¤â¸«»ö¤Ç¤·¤¿¡£Ìý³¨¤Ç¤¢¤ó¤Ê¤ËºÙ¤«¤¯ÉÁ¤¯¤³¤È¤¬¤Ç¤­¤ë¤Ê¤ó¤Æ¡£ËÜʪ¤è¤êËÜʪ¤Ã¤Ý¤¤¤È¤¤¤Ã¤¿¤é¤¤¤¤¤Î¤Ç¤·¤ç¤¦¤«¡£¼Ì¼ÂŪ¤Ç¤¹¤¬¡¢Ç÷ÎϤΤ¢¤ëºîÉʤ¬ÌÜÇò²¡¤·¤Ç¤·¤¿¡£Èþ½Ñ¤Ë¤ÏÌç³°´Á¤Ê¤Î¤Ç¤¹¤¬¡¢¤¿¤Þ¤Ë¤Ï¡¢Í­Ì¾¤ÊºîÉʤò¸«¤ë¤Î¤â¤¤¤¤¤â¤Î¤Ç¤¹¤Í¡£¡¡
イメージ 1

¤É¤¦¤ä¤Ã¤Æ¤³¤ó¤Ê¤ËÀºÌ©¤ÊÉÁ¼Ì¤¬¤Ç¤­¤¿¤Î¤Ç¤·¤ç¤¦¡£¥Õ¥§¥ë¥á¡¼¥ë¤Ï¥«¥á¥é¡¦¥ª¥Ö¥¹¥­¥å¥é¤È¤¤¤¦¤â¤Î¤ò»È¤Ã¤Æ¡¢ÉÁ¤¤¤Æ¤¤¤¿¤È¤¤¤ï¤ì¤Æ¤¤¤Þ¤¹¡£¥«¥á¥é¡¦¥ª¥Ö¥¹¥­¥å¥é¤Ï¡¢¥Ô¥ó¥Û¡¼¥ë¥«¥á¥é¤ÈƱ¤¸¸¶Íý¤ÇÅê±Æ¤¹¤ë¥«¥á¥é¤Î¸¶·¿¤È¤Ê¤Ã¤¿¤â¤Î¤Î¤è¤¦¤Ç¤¹¡£
イメージ 2













¤ä¤Ï¤ê¡¢µ»½Ñ³×¿·¤¬¤¢¤Ã¤¿¤Î¤Ç¤¹¤Í¡£

º£²ó¤ÎŸ¼¨¤Ç¤Ï¡¢¡ÖÃÏÍý³Ø¼Ô¡×¤ËÉÁ¤«¤ì¤Æ¤¤¤¿¤Ë¤Ï¡¢¤½¤ÎÅö»þ¤ÎÀ¤³¦ÃϿޡ¢Ä구¡¢¥³¥ó¥Ñ¥¹¡¢Ãϵ嵷¤âŸ¼¨¤µ¤ì¤Æ¤¤¤Æ¤È¤Æ¤â¶½Ì£¿¼¤«¤Ã¤¿¤Ç¤¹¡£
¥ª¥é¥ó¥À¿Í²è²È¥Õ¥§¥ë¥á¡¼¥ë¤¬³èÌö¤·¤¿17À¤µª¤Ï¡¢¥ª¥é¥ó¥À¤¬¡¢¤â¤Ã¤È¤âδÀ¹¤ò¶Ë¤á¤¿¤³¤í¤Ç¤¹¡£¥ª¥é¥ó¥À¤ÏÅ쥤¥ó¥É²ñ¼Ò¤òÀßΩ¤·¡¢ÂæÏѤò¿¢Ì±ÃϤˤ·¤¿¤ê¡¢¹¾¸ÍËëÉܤȤâËÇ°×¤ÎÆÈÀ긢¤òÆÀ¤ë¤³¤È¤ËÀ®¸ù¤·¥¢¥¸¥¢¤Ë¿Ê½Ð¤·¤Æ¤¤¤Þ¤·¤¿¡£¤·¤«¤·¡¢¤½¤Î¸å¡¢¥¤¥®¥ê¥¹¤È¾×ÆÍ¤¹¤ë¤è¤¦¤Ë¤Ê¤ê¡¢À襤¤ËÇԤ졢½ù¡¹¤ËÎϤò¤¦¤·¤Ê¤Ã¤Æ¤¤¤­¤Þ¤¹¡£¡ÖÃÏÍý³Ø¼Ô¡×¤Ï1669ǯ¤ËÉÁ¤«¤ì¤Æ¤¤¤Þ¤¹¤¬¡¢¤½¤Î3ǯ¸å¤ËÂè3¼¡±ÑÍöÀïÁ褬ËÖȯ¤·¤Æ¤¤¤Þ¤¹¡£¡ÖÃÏÍý³Ø¼Ô¡×¤ËÉÁ¤«¤ì¤Æ¤¤¤ëÃϵ嵷¤äÀ¤³¦ÃϿޤò¸«¤ë¤È¡¢Î´À¹¤ò¶Ë¤á¤¿¤½¤ÎÅö»þ¤Î»þÂ夬ÅÁ¤ï¤Ã¤Æ¤¯¤ë¤è¤¦¤Ç¤¹¡£

¤â¤·º£¸åµ¡²ñ¤¬¤¢¤ì¤Ð¡¢Æ±¤¸»þÂå¤ËÉÁ¤«¤ì¤¿¡Öŷʸ³Ø¼Ô¡×¡Ö¿¿¼î¤Î¼ª¾þ¤Î¾¯½÷¡×¤Ê¤É¤â¸«¤Æ¤ß¤¿¤¤¤Ê¤¢¤È»×¤¤¤Þ¤·¤¿¡£

イメージ 3イメージ 4























ËÜÅö¤Ï¡¢»Ò¶¡¤âÏ¢¤ì¤Æ¹Ô¤­¤¿¤«¤Ã¤¿¤Î¤Ç¤¹¤¬¡¢²ñ¼Ò¤¬¡¢ÌÚ¶âµÙ¤ß¤ËÊѹ¹¤µ¤ì¤Æ¤·¤Þ¤¤¡¢
µÙ¤ß¤¬¤¢¤ï¤º¡¢»Ò¶¡¤òÏ¢¤ì¤Æ¹Ô¤¯¤³¤È¤¬¤Ç¤­¤Ê¤¯¤Æ»Äǰ¤Ç¤·¤¿¡£
»Ò¶¡¤Ï·ô¤¬¤Ê¤¯¤Æ¤â¥¿¥À¤Ç¸«¤é¤ì¤ë¤Î¤Ç¤¹¤¬¡£
º£Æü¤Ï»ä¤ÎÃÂÀ¸Æü¡£
¤È¤¤¤¦¤³¤È¤Ç¡¢º£Æü¤Ï¡¢ÃÂÀ¸Æü¤Ë´Ø¤·¤ÆÅ·ÂΤÎé¥Ãߤò¤Á¤ç¤Ã¤È¡£
´î¼÷¤ÎÃÂÀ¸Æü¤Ë·î¤ò¸«¤ë¤È¡¢À¸¤Þ¤ì¤¿»þ¤ÈƱ¤¸·î¤¬¸«¤¨¤ë¤½¤¦¤Ç¤¹¡£
¤³¤ì¤Ï¡¢ÂÀÍۤȷî¤Î¼þ´ü¤«¤éƳ¤«¤ì¤ë¤â¤Î¤Î¤è¤¦¤Ç¤¹¡£

Ãϵå¤ÎÂÀÍÛ¤ËÂФ¹¤ë¸øÅ¾¼þ´ü¤Ï¡¢365.242194Æü
·î¤ÎÃϵå¤ËÂФ¹¤ë¸øÅ¾¼þ´ü¤Ï¡¢29.530589

¥á¥È¥ó¼þ´ü¤È¤Ï£±£¹Ç¯¤Ç¡¢
¡¡¡¡365.242194¡ß19ǯ ¡á6939.601686Æü
¡¡¡¡29.530589¡ß235·î¡á6939.688415Æü
¤È¤Ê¤ë¤³¤È¤«¤é¡¢£²¤Ä¤Î¼þ´ü¤¬Ìó6940Æü¤ÇƱ¤¸¤Ë¤Ê¤ê¤Þ¤¹¡£¸·Ì©¤Ë¤¤¤¦¤¦¤ÈÌó2»þ´Ö¤Îº¹¤Ç¤¹¤¬¡£

¤µ¤é¤Ë19ǯ¤ò4Çܤ·¤¿¥«¥ê¥Ý¥¹¼þ´ü¡Ê27759Æü¡Ë¤È¤¤¤¦¤Î¤¬¤¢¤Ã¤Æ¡¢¤³¤ì¤Ï¡¢¡¡
¡¡¡¡¡¡1ǯ¤ÏÌó365.25Æü¡Ê±¼Ç¯¤¬4ǯ¤Ë1Å٤ʤΤϤ³¤Î¤¿¤á¡Ë¤È¤¹¤ë¤È19ǯ¤Ç6939.75Æü¡£
¡¡¡¡¤³¤ì¤ò¹¹¤Ë4Çܤ·¤Æ¾¯¿ôÅÀ¤ò¤Ê¤¯¤¹¤È365.25Æü¡ß19¡ß4¡á27759Æü
¡¡¡¡¤È¤Ê¤ê¤³¤ì¤Ï76ǯ¡Ê¡á940·î¡á27759Æü¡Ë¤È¤Ê¤ë¼þ´ü¤Ç¤¹¡£
¤³¤ì¤Ï¡¢¥­¥å¥¸¥³¥¹¤Îŷʸ³Ø¼Ô¥«¥ê¥Ý¥¹¤¬µª¸µÁ°330ǯ¤Ëȯ¸«¤·¤¿¤½¤¦¤Ç¤¹¡£

´î¼÷¤ÎÃÂÀ¸Æü¤Ï¡¢9ǯ¡ß4²ó¡á76ǯ¤Ç¡¢¤³¤ì¤Ï¡¢¿ô¤¨¤Ç77ºÐ¤À¤«¤é¡¢ÂÀÍۤȷî¤Î¼þ´ü¤¬°ìÃפ·¤Æ¡¢Æ±¤¸·î¤Ë¤Ê¤ë¤È¤¤¤¦¤ï¤±¤Ç¤¹¡£

¥Ò¥Ã¥Ñ¥ë¥³¥¹¼þ´ü¤Ï¤â¤Ã¤ÈŤ¤¼þ´ü¤Ë¤Ê¤ê¤Þ¤¹¡£¤³¤ì¤Ï304ǯ¡á3760·î¡á11035Æü¤Ç¤¹¡£
¤³¤ì¤Ï¡¢¥Ë¥«¥¤¥¢¤Î¥Ò¥Ã¥Ñ¥ë¥³¥¹¤¬¡¢¤Ï¥«¥ê¥Ý¥¹¼þ´ü¤ò¤µ¤é¤Ë4Çܤ·¤Æ1Æü°ú¤¤¤Æµá¤á¤¿¤½¤¦¤Ç¤¹¡£

¤½¤Î¾¡¢7*76ǯ¡á532ǯ¼þ´ü¤È¤¤¤¦¼þ´ü¤â¤¢¤ë¤½¤¦¤Ç¤¹¡£

¤Þ¤¢¡¢¤³¤ì¤Ï¡¢ÂÀ±¢Îñ¤ò»È¤¦¾ì¹ç¤Ë¡¢·î¤ÈÂÀÍۤȤ¤¤¦´Ø·¸¤Î¤Ê¤¤¤â¤ÎƱ»Î¤Î¼þ´ü¤ò¤¢¤ï¤»¤è¤¦¤È¤·¤Æ¡¢¤³¤ó¤Ê·×»»¤¬É¬Íפˤʤ俤褦¤Ç¤¹¡£

¿Í´Ö¡¢304ǯ¤È¤«532ǯ¤Þ¤Ç¤ÏĹÀ¸¤­¤Ç¤­¤Þ¤»¤ó¤¬¡¢76ǯ¤°¤é¤¤¤Ï´èÄ¥¤ê¤¿¤¤¤â¤Î¤Ç¤¹¤Í¡£

QC¸¡Äê

º£Æü¡¢QC¸¡Äê1µé¤Î¹ç³ÊÄÌÃΤ¬ÆÏ¤¤¤¿¡£
·×»»¤ò¥ß¥¹¤Ã¤Æ¤·¤Þ¤Ã¤¿¤Î¤Ç¡¢Íî¤Á¤Æ¤¤¤ë¤È»×¤Ã¤Æ¤¤¤¿¤Î¤À¤¬¡¢°Õ³°¤Ë¤â¹ç³Ê¤·¤Æ¤¤¤¿¡£
¤Þ¤¢¡¢¤è¤«¤Ã¤¿¡£
£±µé¹ç³ÊΨ (%)¤Î¿ä°Ü¤Ï¡¢
16.08, 16.44, 16.74, 14.89, 15.46
¤À¤½¤¦¤À¡££²µé¤Ï50%¶á¤¤¤Î¤Ç¡¢¤ä¤Ï¤ê¡¢£±µé¤ÏÆñ¤·¤¤¡£
±þÊç¼Ô¿ô¤Ï£³Ëü¿Í¤òͤ¨¤¿¤½¤¦¤À¡£¥Í¥Ã¥È¤Ç±þÊ礬½ÐÍè¤Ê¤¤¤Þ¤À¤Þ¤À¥Þ¥¤¥Ê¡¼¤Ê¸¡Äê¤À¤¬¡¢¤½¤Î³ä¤Ë¤Ï·òÆ®¤·¤Æ¤¤¤ë¤È¤¤¤¨¤ë¤Î¤Ç¤Ï¤Ê¤¤¤À¤í¤¦¤«¡£

º£²ó¤Î¸¡Äê¤Î¥Æ¥¹¥È¤Ç¤Ï¡¢¼Â¸³·×²èË¡¤Îʬ³äË¡¡Ê¤¤¤¯¤Ä¤«¤Î°ø»Ò¤Î¿å½à¤ò¥°¥ë¡¼¥×Æâ¤Ç¤ÏÊѹ¹¤·¤Ê¤¤¼Â¸³ÊýË¡¡Ë¤Ë¤ª¤±¤ëʬ»¶Ê¬ÀÏɽ¤Î·×»»¤¬½Ð¤Æ¤¤¤¿¡£

¤Á¤ç¤Ã¤ÈÉü½¬¡£
°ø»ÒA¤È°ø»ÒB¤Î£²°ø»Ò¤ò¼è¤ê¾å¤²¤Æ·«¤êÊÖ¤·¼Â¸³¤ò¹Ô¤¦»þ¤Ë¡¢°ø»ÒA¤ÎÀÚ¤êÂØ¤¨¤Ë¿Âç¤Ê»þ´Ö¤ÈÈñÍѤ¬¤«¤«¤ë¾ì¹ç¡¢Ê¬³äË¡¤òºÎÍѤ¹¤ë¤È·ÐºÑŪ¡£¤³¤Îʬ³ä¼Â¸³¤Ë¤Ï¡¢­¡´°Á´Ìµºî°Ù²½Ë¡¤È­¢Íð²ôË¡¡Ê̵ºî°Ù¥Ö¥í¥Ã¥¯Ë¡¤È¤â¤¤¤¦¡Ë¤Î£²¤Ä¤ÎÊýË¡¤¬¤¢¤ë¡£

­¡´°Á´Ìµºî°Ù²½Ë¡¤Ë¤è¤ë1¼¡°ø»Ò¤Î·«¤êÊÖ¤·
¡¡ 1¼¡°ø»ÒA¡Ê3¿å½à¡Ë¡¢2¼¡°ø»ÒB¡Ê2¿å½à¡Ë¤È¤·¡¢·«ÊÖ¤·¿ô¤òr=2¤È¤¹¤ë¡£
A¤Î·«¤êÊÖ¤·¤ò´°Á´Ìµºî°Ù²½Ë¡¤Ç¹Ô¤¦¡Êʬ³äË¡¤Ê¤Î¤Ç¡¢B¤Î¿å½à¤òÊѤ¨¤ë¤È¤­¤ËA¤Î¿å½à¤ÏÊѤ¨¤Ê¤¤¡£)¡£
¤³¤Î¾ì¹ç¤Îʬ»¶Ê¬ÀÏɽ
¥¤¥á¡¼¥¸ 1
­¢Íð²ôË¡¤Ë¤è¤ë1¼¡°ø»Ò¤Î·«¤êÊÖ¤·
¡¡1¼¡°ø»ÒA¡Ê3¿å½à¡Ë¡¢2¼¡°ø»ÒB¡Ê2¿å½à¡Ë¤È¤·¡¢·«ÊÖ¤·¿ô¤òr=2¤È¤¹¤ë¡£
¡¡A¤Î·«¤êÊÖ¤·¤òÍð²ôË¡¤Ç¹Ô¤¦¡Ê¤¹¤Ù¤Æ¤Î¿å½à¤ÎÁȤ߹ç¤ï¤»¤ò¥Ö¥í¥Ã¥¯¤Î¿ô¤À¤±¼Â¸³¤¹¤ë¡£¡Ë¡£
¤³¤Î¾ì¹ç¤Îʬ»¶Ê¬ÀÏɽ
¥¤¥á¡¼¥¸ 2

À±ºÂ¤ÈÀ±¿Þ

¥¤¥á¡¼¥¸ 1

À±ºÂ¤Ä¤­¤ÎÀ±¿Þ¤ò¥×¥í¥Ã¥È¤·¤Æ¤ß¤¿¤¯¤Ê¤Ã¤Æ¥Í¥Ã¥È¤Î¾ðÊó¤ò½¦¤Ã¤ÆR¸À¸ì¤ÇGIF¤òºî¤Ã¤Æ¤ß¤¿¡£

»²¹Í¤Ë¤·¤¿¤Î¤Ï¡¢
http://hooktail.org/computer/index.php?Gnuplot%A4%C7%A5%D7%A5%E9%A5%CD%A5%BF%A5%EA%A5%A6%A5%E0%A1%AA
¤Î¥µ¥¤¥È¡£¤³¤³¤Ë¤Ï¡¢GNUPLOT¤ÇÀ±¿Þ¤òÉÁ¤¤¤Æ¤¤¤ë»öÎ㤬ºÜ¤Ã¤Æ¤¤¤¿¡£

À±ºÂ¥Ç¡¼¥¿¤Ï¡¢
http://otsubo.info/contents/SETISupport/download.html
¤Î¾ðÊó¤ò»²¹Í¤Ë¼¡¤Î¥µ¥¤¥È¤«¤éÆþ¼ê¤·¤¿¡£
http://www.astro.wisc.edu/~dolan/constellations/java/AboutJava.html
¤³¤Î¥µ¥¤¥È¤Ë¥×¥í¥°¥é¥à¤Î¥½¡¼¥¹¤¬¸ø³«¤µ¤ì¤Æ¤¤¤Æ¡¢lines.dat¤ËÀ±ºÂ¥Ç¡¼¥¿¤¬¤¢¤ë¤È¤Î¤³¤È¤Ê¤Î¤Ç¡¢¥À¥¦¥ó¥í¡¼¥É¤·¤Æ¼ê¤ËÆþ¤ì¤¿¡£

À±ºÂ¤Ï¥×¥È¥ì¥Þ¥¤¥ª¥¹¤Î»þÂå¤Ï£´£¸¤ÎÀ±ºÂ¤¬Äê¤á¤é¤ì¤Æ¤¤¤¿¤¬¡¢Âç¹Ò³¤»þÂå¤Ë£¸£¸¤ËÁý¤ä¤µ¤ì¤¿¤È¤¤¤¦¡£
ɬÍפÏȯÌÀ¤ÎÊì¤Ç¤¢¤ë¡£¤·¤«¤·¡¢Äê¤á¤é¤ì¤¿£¸£¸¤ÎÀ±ºÂ¤ÎÀ±¤ÏÁ´¤Æ¤¬ÌÀ¤ë¤¤À±¤Ç¤Ï¤Ê¤¤¡£·ë¹½¸«¤¨¤Ë¤¯¤¤À±¤âº®¤¶¤Ã¤Æ¤¤¤ë¡£ÆüËܤ«¤é¤Ï¸«¤¨¤Ê¤¤À±ºÂ¤â¤¢¤Ã¤¿¤ê¤¹¤ë¡£Ä´¤Ù¤Æ¤¤¤¯¤È¶½Ì£¿¼¤¤Ï䬤¤¤¯¤Ä¤â¤¢¤ë¡£
°ìÅÙÅ·ÂδѬ¤Ë¤Ç¤â¹Ô¤³¤¦¤«¤Ê¤¢¡£

Runge-Kutta-Fehlbergˡ

¥¤¥á¡¼¥¸ 1

ºòÆü¡¢£³ÂÎÌäÂê¤ÇRunge-Kutta-FehlbergË¡¤ò»È¤Ã¤¿¤¬¤¦¤Þ¤¯¤¤¤Ê¤«¤Ê¤Ã¤¿¤³¤È¤ò½ñ¤¤¤¿¤¬¡¢¤ä¤Ï¤ê¡¢¸íº¹È½Äê¤ÎÉôʬ¤¬´Ö°ã¤Ã¤Æ¤¤¤¿¤è¤¦¤À¡£½¤Àµ¤·¤¿¤È¤³¤í¡¢¤¦¤Þ¤¯¤¤¤Ã¤¿¡£
¤·¤«¤·¡¢·×»»¤Ë¤«¤Ê¤ê»þ´Ö¤¬¤«¤«¤ë¡£»ä¤Î»ý¤Ã¤Æ¤¤¤ëÈóÎϤʥѥ½¥³¥ó¤Ç¤Ï¡¢°ìÈÕÊüÃÖ¤·¤Æ¤ä¤Ã¤È½ª¤ï¤ë¤«¤É¤¦¤«¤°¤é¤¤¤À¡£¥á¥â¥ê¤â¤À¤¤¤Ö¾ÃÈñ¤¹¤ë¡£
»²¹Í¤Ë¤·¤¿¤Î¤Ï
http://homepage1.nifty.com/gfk/Runge-Kutta-Fehlberg.htm
°ìÈ̤ˡ¢¿ôÃÍ·×»»¤Ç¤Ï¡¢°Ì¿ô¤Î°Û¤Ê¤ë¶á»÷Ë¡¤òÍѤ¤¤ë¤³¤È¤Ë¤è¤ê¡¤¶É½êÂǤÁÀÚ¤ê¸íº¹¤òͽ¬¤·¡¤¤³¤Îͽ¬¤ò¤â¤È¤ËÂç°è¸íº¹¤ò¸íº¹¸ÂÅÙÆâ¤Ë¼ý¤Þ¤ë¤è¤¦¤Ë¡¤¹ï¤ßÉý¤ò·è¤á¤ë¼êË¡¤¬¤è¤¯»È¤ï¤ì¤ë¡£Runge-Kutta-FehlbergË¡¤Ï¡¢¤³¤ì¤ò¥ë¥ó¥²¥¯¥Ã¥¿Ë¡¤Ë»È¤Ã¤¿¼êË¡¤Î°ì¤Ä¤Ç¤¢¤ë¡£
Íפϡ¢Ëè²ó¡¢¸íº¹¤ò¥Á¥§¥Ã¥¯¤·¡¢»þ´Ö¹ï¤ßÉý¤òÊѹ¹¤·¤Ê¤¬¤é·×»»¤¹¤ë¤Î¤Ç¡¢ÀºÅÙ¤¬³ÊÃʤˤ褯¤Ê¤ë¡£
º£²ó»È¤Ã¤¿¤Î¤Ï¡¢£¶ÃÊ£µ¼¡¤ÎRunge-Kutta-FehlbergË¡
¥½¡¼¥¹¤Ï°Ê²¼¤Î¤È¤ª¤ê
# physical constants
G         = 1.00                 #  Gravity constant
# experimental settings
speed=1024*2
dT        = 1/speed               # temporal step
N         = 3                     # number of stars
T_MAX=60
Rlimit=0.00000001
elimit=0.00001 
Tlimit=0.00000001 
# calculates gravity force amoung two stars
g_func<-function( x1,x2,M1,M2){ 
	f<-c(0,0,0)
r=sqrt((x1[[1]]-x2[[1]])**2+(x1[[2]]-x2[[2]])**2+(x1[[3]]-x2[[3]])**2)
	if (r<Rlimit)	r=Rlimit
	f=-G*M2/(r*r*r) * (x1-x2)
	return(f)
}
# calculates gravity field  
forcefunc<-function(x){
	f<-matrix(0,nrow=N,ncol=3)     # force of star i
	for(i in 1:N){
		for( j in 1:N){
		if(i!=j){
r=sqrt((x[i,][1]-x[j,][1])**2+(x[i,][2]-x[j,][2])**2+(x[i,][3]-x[j,][3])**2)
		fij<- g_func( x[i,],x[j,],M[i,],M[j,])
		f[i,]=f[i,]+fij
		}
		}
	}
	return(f)
}
# calculates total energy
CalcEnergy<-function(){
	# sums up energy
	E=0
	for( i in 1:N){
	E= E+M[i,]/2*(v[i,][1]**2+v[i,][2]**2+v[i,][3]**2)  # Kinetic Energy
		for( j in i:N){
		if(i!=j) {
r=sqrt((x[i,][1]-x[j,][1])**2+(x[i,][2]-x[j,][2])**2+(x[i,][3]-x[j,][3])**2)
		if (r!=0){
			E= E-G*M[i,]*M[j,]/r  #Potential Energy
		}
		}
		}
	}
	return( E )
}
#initial star setting
# velocity of stars
v<-matrix(0,nrow=N,ncol=3)
v[1,]<-c(0,0,0)
v[2,]<-c(0,0,0)
v[3,]<-c(0,0,0) 
# position of a stars             
x<-matrix(0,nrow=N,ncol=3)
x[1,]<-c(1,3,0)
x[2,]<-c(-2,-1,0)
x[3,]<-c(1,-1,0)                   
# mass of a stars
M<-matrix(0,nrow=N,ncol=1)
M[1,]     = 3.0
M[2,]     = 4.0
M[3,]     = 5.0
#plot initial points
par(xpd=T,pch=20)
split.screen(c(2,1))
screen(1)           
plot(c(0,0), axes=FALSE,xlim=c(-10,10), ylim=c(-5,5),type="n",ann = F)
screen(1)
pre_points<-matrix(0,nrow=N,ncol=3)
for( i in 1:N){
	pre_points[i,]<-x[i,]
	points(pre_points[i,][1],pre_points[i,][2],col=i+1)
	segments(pre_points[i,][1],pre_points[i,][2],x[i,][1],x[i,][2],col=i+1)
}
Pre_E<-CalcEnergy()
#Runge-Kutta-Fehlberg method (dT control)
T=0
Pre_T=T
while( T<T_MAX){
min_r=1000
repeat {
	k1_x<-dT*v
	k1_v<-dT*forcefunc(x)
	k2_x<-(dT+dT/4)*(v+k1_v/4)
	k2_v<-(dT+dT/4)*forcefunc(x+k1_x/4)
	k3_x<-(dT+3*dT/8)*(v+k1_v*3/32+k2_v*9/32)
	k3_v<-(dT+3*dT/8)*forcefunc(x+k1_x*3/32+k2_x*9/32)
k4_x<-(dT+12*dT/13)*(v+k1_v*1932/2197-k2_v*7200/2197+k3_v*7296/2197)
k4_v<-(dT+12*dT/13)*forcefunc(x+k1_x*1932/2197-k2_x*7200/2197+k3_x*7296/2197)
k5_x<-(dT+dT)*(v+k1_v*439/216-k2_v*8+k3_v*3680/513-k4_v*845/4104)
k5_v<-(dT+dT)*forcefunc(x+k1_x*439/216-k2_x*8+k3_x*3680/513-k4_x*845/4104)
k6_x<-(dT+dT/2)*(v-k1_v*8/27+k2_v*2-k3_v*3544/2565+k4_v*1859/4104-k5_v*11/40)
k6_v<-(dT+dT/2)*forcefunc(x-k1_x*8/27+k2_x*2-k3_x*3544/2565+k4_x*1859/4104-k5_x*11/40)
	xa<-x+k1_x*25/216+k3_x*1408/2565+k4_x*2197/4104-k5_x/5
	xb<-(x+k1_x*16/135+k3_x*6656/12825+k4_x*28561/56430-k5_x*9/50+k6_x*2/55)
	va<-v+k1_v*25/216+k3_v*1408/2565+k4_v*2197/4104-k5_v/5
	vb<-(v+k1_x*16/135+k3_v*6656/12825+k4_v*28561/56430-k5_v*9/50+k6_v*2/55)
	xab<-abs(k1_x/360 - 128*k3_x/4275 - 2197*k4_x/75240 + k5_x/50 + 2*k6_x/55)
	vab<-abs(k1_v/360 - 128*k3_v/4275 - 2197*k4_v/75240 + k5_v/50 + 2*k6_v/55)
	sv=(elimit*dT/vab/2)^.25
	sx=(elimit*dT/xab/2)^.25
	s_min=1000
	for(i in 1:3){
		if(s_min>sv[[i]]) s_min<-sv[[i]]
		if(s_min>sx[[i]]) s_min<-sx[[i]]
	}
	if(s_min>=0.8 || dT<=Tlimit){
		break
	}
	else {
		if ( s_min < 0.1) s_min =0.1
		dT<-s_min*dT
		if ( dT < Tlimit ) dT =Tlimit
	}
}
v=va
x=xa
for(i in 1:N){
	for( j in i:N){
		if(i!=j){
	r=sqrt((x[i,][1]-x[j,][1])**2+(x[i,][2]-x[j,][2])**2+(x[i,][3]-x[j,][3])**2)
		if(r<min_r) min_r=r
		}
	}
}
T=T+dT
dT=min_r/speed
if ( min_r < 0.1) dT =min_r/speed/2
if ( min_r < 0.01) dT=min_r/speed/8
if ( dT < Tlimit ) dT =Tlimit
if(T-Pre_T>0.001){
	screen(1)
	for( i in 1:N){
	segments(pre_points[i,][1],pre_points[i,][2],x[i,][1],x[i,][2],col=i+1)
	pre_points[i,]<-x[i,]
	}
	E<-CalcEnergy()
	screen(2)
	plot(c(0,-15), xlim=c(0,T_MAX), ylim=c(-20,-10),type="n",ann = F)
	par(new=T)
	if (E<=-20) E=-20
	if (E>=0) E=0
	segments(Pre_T,Pre_E,T,E)
	Pre_E=E
	Pre_T=T
}
}

Á´29¥Ú¡¼¥¸

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

[ ¼¡¤Î¥Ú¡¼¥¸ ]


.
runomee
runomee
ÃËÀ­ / AB·¿
¿Íµ¤ÅÙ
Yahoo!¥Ö¥í¥°¥Ø¥ë¥× - ¥Ö¥í¥°¿Íµ¤Å٤ˤĤ¤¤Æ

¥Ö¥í¥°¥Ð¥Ê¡¼

Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

ɸ½à¥°¥ë¡¼¥×

WEBÀ½ºî

¿ô³Ø

¹©³Ø

ʪÍý³Ø

¸ì³Ø

·ÐºÑ¡¦¶âÍ»

»Ò¶¡¤Îɵ¤

¤´¶á½ê¡©¶áÎÙÃϰ衩

¿ÆÎà

ºÊ¤ÎÆüµ­

¥ª¥Õ¥£¥·¥ã¥ë¥Ö¥í¥°

Yahoo!¤«¤é¤Î¤ªÃΤ餻

²áµî¤Îµ­»ö°ìÍ÷

¸¡º÷ ¸¡º÷

¥¹¥Þ¡¼¥È¥Õ¥©¥ó¤Ç¸«¤ë

¥â¥Ð¥¤¥ëÈÇYahoo!¥Ö¥í¥°¤Ë¥¢¥¯¥»¥¹¡ª

¥¹¥Þ¡¼¥È¥Õ¥©¥óÈÇYahoo!¥Ö¥í¥°¤Ë¥¢¥¯¥»¥¹¡ª

[PR]¤ªÆÀ¾ðÊó

¤Õ¤ë¤µ¤ÈǼÀÇ¥µ¥¤¥È¢ã¤µ¤È¤Õ¤ë¢ä
¼Â¼Á2000±ß¤Ç¹¥¤­¤Ê¤ªÎéÉʤòÁª¤Ù¤ë
ËèÆü¿Íµ¤¥é¥ó¥­¥ó¥°¹¹¿·Ã桪

¤½¤Î¾¤Î¥­¥ã¥ó¥Ú¡¼¥ó


¤ß¤ó¤Ê¤Î¹¹¿·µ­»ö