Á´ÂÎɽ¼¨

[ ¥ê¥¹¥È | ¾ÜºÙ ]

µ­»ö¸¡º÷
¸¡º÷
£´¡¥Â®Å٥ݥƥ󥷥ã¥ë¤ÈήÀþ´Ø¿ô¤Ï¤É¤¦¤·¤ÆÀ¤´Ö¤Ë¸ºß¤¹¤ë¤«

¡¡»ä¤Ï¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ï´Ö°ã¤Ã¤Æ¤¤¤ë¤È»×¤¦¤·¡¢±²¤Èȯ»¶¤¬Î¾Êý¤È¤â¸ºß¤¹¤ëή¤ì¤Ë¤Ï¡¢Â®Å٥ݥƥ󥷥ã¥ë¤âήÀþ´Ø¿ô¤â¸ºß¤·¤Ê¤¤¤È¹Í¤¨¤Æ¤¤¤Þ¤¹¡£

¡¡¤·¤«¤·¡¢¸½¼Â¤Ëµ¤¾ÝÄ£¤Ê¤É¤Ç¤Ï¡¢ËèÆü¤ÎÅ·µ¤¿Þ»ñÎÁ¤È¤·¤ÆÈ¯É½¤·¤Æ¤¤¤ë»ñÎÁ¤ÎÃæ¤Ë¤³¤ì¤éÆó¤Ä¤Î»ñÎÁ¤¬´Þ¤Þ¤ì¤Æ¤¤¤Þ¤¹¡£Ìµ¤¤È¦¤Î´Ø¿ô¤¬²¿¸Îȯɽ¤µ¤ì¤Æ¤¤¤ë¤Î¤Ç¤·¤ç¤¦¤«¡£

¡¡Î®¤ì¡ÊÉ÷¡Ë¤Î¾ì£Æ¤¬¤¢¤ì¤Ð¡¢¢à¡¦£Æ¤Çȯ»¶Ê¬Éۤϵá¤á¤é¤ì¤ë¤·¡¢¢à¡ß£Æ¤Ç²óž¡¢¤¹¤Ê¤ï¤Á±²ÅÙʬÉÛ¤¬µá¤á¤é¤ì¤Þ¤¹¡£È¯»¶Ê¬ÉÛ¤âήÀþ´Ø¿ô¤â®Å٥ݥƥ󥷥ã¥ë¤äήÀþ´Ø¿ô¤¬Ìµ¤¯¤Æ¤âµá¤á¤é¤ì¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 8

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£±¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Î³µÇ°¿Þ
¡¡¤½¤·¤Æ°ìö¡¢È¯»¶Ê¬Éۤȱ²Ê¬ÉÛ¤¬µá¤á¤é¤ì¤ì¤Ð¡¢¤½¤ì¤é¤¬Àþ·Á´Ø·¸¡Ê­¤·¹ç¤ï¤»¤Ç¹çÀ®¤¬²Äǽ¡Ë¤ËÍ­¤í¤¦¤È̵¤«¤í¤¦¤È¡¢±²Ìµ¤·Î®¤ì¡ÊÉ÷¡Ë¤È¡¢È¯»¶Ìµ¤·Î®¤ì¡ÊÉ÷¡Ë¤Ëʬ²ò¤Ç¤­¤¿¤â¤Î¤È·è¤á¤Æ¤·¤Þ¤¦¤Î¤¬¡¢¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ç¤¹¡£

¡¡±²Ìµ¤·Î®¤ì¡ÊÉ÷¡Ë¤¬¤¢¤ë¤È·è¤á¤Æ¤·¤Þ¤¨¤Ð¢à¡¦£Æ¤ÎʬÉÛ¤«¤é®Å٥ݥƥ󥷥ã¥ë¤òµá¤á¤ë¤³¤È¤¬½ÐÍè¤Þ¤¹¡£È¯»¶Ìµ¤·Î®¤ì¤¬Í­¤ë¤È·è¤á¤Æ¤·¤Þ¤¨¤Ð¢à¡ß£Æ¤ÎʬÉÛ¤«¤éήÀþ´Ø¿ô¤òµá¤á¤Æ¤·¤Þ¤¦»ö¤¬½ÐÍè¤Þ¤¹¡£
¡¡
¡¡»ä¤Ï¡¢°ìÈ̤ˤϿޣ´¡¥£±¤Ë¼¨¤¹¤è¤¦¤Ë¡¢±²¤Èȯ»¶¤¬¶¦Â¸¤¹¤ë¾ì¹ç¤Ï¡¢Î®¤ì¤Î¥Ù¥¯¥È¥ë¤ÎÃæ¤Ë¤É¤Á¤é¤ÎÀ®Ê¬¤Ë¤â´óÍ¿¤¹¤ëή¤ì¤ÎÀ®Ê¬¤¬¤¢¤ë¤¿¤á¡¢Ê¬²ò¤Ï½ÐÍè¤Ê¤¤¤³¤È¤ò¡Ê¤½¤Î£±¡Ë¤Ç½Ò¤Ù¤Æ¤¤¤Þ¤¹¡£¤·¤«¤·¡¢°ìöʬ¤«¤ì¤Æ¤·¤Þ¤¨¤Ð¡¢Î®ÂÎÎϳؤδðÁÃÄêÍý¤ËÄñ¿¨¤¹¤ë¤³¤È¤¬Ìµ¤¤¤³¤È¤âÀè¤Ë½Ò¤Ù¤Æ¤¤¤ë¤È¤ª¤ê¤Ç¤¹¡£

¡¡ËÜÅö¤Ïʬ²ò¤Ç¤­¤Ê¤¤Î®¤ì¤òʬ²ò¤·¤ÆÂ­¤·¤¢¤ï¤»¤Æ¤¤¤Þ¤¹¤Î¤Ç¡¢¹çÀ®¤·¤¿É÷¤È¸µ¤ÎÉ÷¤ÏÅù¤·¤¯¤Ê¤Ã¤Æ¤¤¤Ê¤¤¤³¤È¤ò°Ê²¼¤Ë¼¨¤·¤Æ¤¤¤Þ¤¹¤¬¡¢È¯»¶À®Ê¬¤ÏÈó¾ï¤Ë¾®¤µ¤¯¡¢¤½¤Î¸íº¹¤¬ÌÀÎÆ¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£¸íº¹¤Î¸¡¾Ú¤Ë;¤ê¶½Ì£¤¬Ìµ¤¤Êý¤Ï¡¢¤½¤Î£³¤Ë¤ª¿Ê¤ß²¼¤µ¤¤¡£

°Ê²¼¤Ëµ¤¾ÝÄ£¤Î¸ø³«¤·¤Æ¤¤¤ë®Å٥ݥƥ󥷥ã¥ë¤ÈήÀþ´Ø¿ô¤Î¼ÂÂ֤ˤĤ¤¤Æ¸¡¾Ú¤¤¤¿¤·¤Þ¤·¤ç¤¦¡£

¡¡¤Ï¤¸¤á¤Ë¡¢¿Þ£´¡¥£²¤Ï2011ǯ£¶·î£²£°Æü£°£°Z¤Î¿å¾øµ¤²èÁü¤Ë£²£°£°£è£Ð£á¤Î¹âÅÙ¡¢É÷¤ò¼¨¤·¡¢¤½¤ÎÉ÷¤«¤éµá¤á¤¿È¯»¶Ê¬ÉÛ¤ò¼¨¤·¤¿¤â¤Î¤Ç¤¹¡£³Ê»ÒÅÀ¤ËÍ¿¤¨¤é¤ì¤ëÀ¸¤ÎÉ÷¤ò¡¢°Ê¸å¤Ï²òÀÏÉ÷¤È¸Æ¤Ö¤³¤È¤Ë¤·¤Þ¤¹¡£¤³¤Î²òÀÏÉ÷¤¬¿Þ£´¡¥£±¤Ç¼¨¤·¤¿£Æ¤ËÅö¤¿¤ê¤Þ¤¹¡£¢à¡¦£Æ¤¬Æ±¿Þ¤Îȯ»¶¡¦¼ý«ʬÉÛ¤ËÁêÅö¤·¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£²¡¡2011ǯ£¶·î£²£°Æü£°£°£Ú¤Î¿å¾øµ¤²èÁü¤È¾åÁØÅ·µ¤¿Þ

¡¡¿å¾øµ¤²èÁü¤È¾åÁØÅ·µ¤¿Þ¤Ë¤Ä¤¤¤Æ²òÀϤ·¤Þ¤·¤ç¤¦¡£

¡¡²«³¤¤Ë°Å°è¡Ê£Ã£±¡Ë¤¬¸«¤é¤ì²¼¹ßµ¤Î®°è¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡£¤½¤Î²¼¹ßµ¤Î®°è¤ËÂбþ¤·¤ÆÂÐή·÷¾åÁؤǤ¢¤ë£²£°£°£è£Ð£áÅ·µ¤¿Þ¤Ç¤Ï¡¢¼ý«°è¡ÊÀĤ¤ÅùÃÍÀþ¤Ç¼¨¤µ¤ì¤Æ¤¤¤ë¡Ë¤¬¸«¤é¤ì¤Þ¤¹¡£¤³¤Î¼ý«¤òµ¯¤³¤¹É÷¤¬¤É¤³¤«¤éÍ褿¤â¤Î¤«¤òÃΤ뤿¤á¤Ë¡¢¤³¤ÎÉ÷¤òÁ̤ë¤È²ÏË̡ʣģ±¡Ë¤ä¤¢¤ë¤¤¤Ï¤½¤Î¤â¤Ã¤È±üÃϡʣģ²¡Ë¤Ë¸«¤é¤ì¤ëÇò¤Ã¤Ý¤¤ÂÐή³èȯ°è¤«¤éȯ»¶¤·¤Æ¤¤¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡£

¡¡À¾ÆüËÜ¤Ï¿å¾øµ¤²èÁü¤ÇÇò¤Ã¤Ý¤¯¤Ê¤Ã¤Æ¤ª¤ê¡¢ÂÐή³èư¤¬³èȯ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤Þ¤¹¡£¤³¤³¡Ê£Ä£³¡Ë¤Ç¾å¾º¤·¤¿É÷¤Ï¾åÁؤòËÌÅì¤Ë¤Ê¤¬¤ì¤Æ¡¢ÅìË̤䤽¤ÎÅìÊý³¤¾å¡Ê£ã£²¡Ë¤Ç¼ý«°è¤òºî¤Ã¤Æµï¤Þ¤¹¡£

¡¡¤³¤Î»þ¤Îµ¤¾ÝÄ£¤¬È¯É½¤·¤Æ¤¤¤ë®Å٥ݥƥ󥷥ã¥ëʬÉÛµÚ¤Ó¤½¤Î®Å٥ݥƥ󥷥ã¥ë¤«¤éÆÀ¤é¤ì¤ëÉ÷¡Ê°Ê¸å®Å٥ݥƥ󥷥ã¥ë¤«¤éµá¤á¤é¤ì¤ëÉ÷¤òȯ»¶É÷¤È¸Æ¤Ö¤³¤È¤Ë¤·¤Þ¤¹¡£¡Ë¤ò¿Þ£´¡¥£³¤Ë¼¨¤·¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 2

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£³¡¡2011ǯ6·î20Æü¤Î®Å٥ݥƥ󥷥ã¥ëʬÉÛ¤Èȯ»¶É÷À®Ê¬
¡¡È¯»¶É÷¤ÏÃͤ¬¾®¤µ¤¤¤¿¤á¡¢¿Þ£´¡¥£²¤Î²òÀÏÉ÷¤Îɽ¼¨¤ËÈæ¤Ù¤ÆÇܤÎŤµ¤Ëɽ¸½¤·¤Æ¤¤¤Þ¤¹¤Î¤Çµ¤¤ò¤Ä¤±¤Æ¤¯¤À¤µ¤¤¡£

¡¡¿Þ4¡¥£³¤ò¸«¤ë¤È¡¢²«³¤¤Î°Å°è¤Ø¼ý«¤¹¤ëÉ÷¤Ï¼ç¤ËÀ¾ÆüËܤÎȯ»¶°è¤«¤é¤Îȯ»¶É÷¡Ê±²Ìµ¤·É÷¡Ë¤È¹Í¤¨¤é¤ì¤Þ¤¹¡£

¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ë¤è¤ë¤È¡¢¸µ¤ÎÉ÷¤«¤é±²Ìµ¤·É÷¤ò¼è¤ê½Ð¤¹¤È¡¢¤³¤ÎÃæ¤Ëȯ»¶¤ä¼ý«¤òµ¯¤³¤¹É÷¤¬Á´¤Æ´Þ¤Þ¤ì¤Æ¤¤¤ë¤Ï¤º¤Ç¤¹¤«¤é¡¢È¯»¶¡¦¼ý«¤ò¹Í»¡¤¹¤ë¤Î¤Ï¤³¤Î®Å٥ݥƥ󥷥ã¥ë¤«¤éµá¤á¤é¤ì¤ëÉ÷¤À¤±¤ò¸«¤ì¤ÐÎɤ¤¤È¹Í¤¨¤é¤ì¤Þ¤¹¡£¤¹¤Ê¤ï¤Á²«³¤¤Î¼ý«°è¤Ç¼ý«¤·¤Æ¤¤¤ë¸¶°ø¤È¤Ê¤Ã¤Æ¤¤¤ëÉ÷¤ÏÀ¾ÆüËܤÎȯ»¶°è¤«¤é¤ÎÉ÷¤È¹Í¤¨¤é¤ì¤Þ¤¹¡£

¡¡°ìÊý¡¢Î®Àþ´Ø¿ô¤È¤½¤ì¤«¤éÆÀ¤é¤ì¤ëȯ»¶Ìµ¤·É÷¤ÎʬÉۤϿޣ´¡¥£´¤ÎÄ̤ê¤Ç¤¹¡£

¥¤¥á¡¼¥¸ 3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£´¡¡Î®Àþ´Ø¿ô¤Èȯ»¶¤Î̵¤¤É÷À®Ê¬

¡¡¿Þ£´¡¥£´¤ÎÉ÷¤Î¥¹¥±¡¼¥ëɽ¼¨¤Ï¿Þ£´¡¥£²¤Î²òÀÏÉ÷¤ÈƱ¤¸¤Ç¤¹¡£¹õ¤¤¼ÂÀþ¤ÏήÀþ´Ø¿ô¤ÎÅùÃÍÀþ¤Ç¡¢ÀĤ¤Ìð°õ¤ÏήÀþ´Ø¿ô¤«¤éµá¤á¤¿É÷¤Ç¤¹¡£¤³¤ÎÉ÷¤òήÀþ´Ø¿ôÉ÷¤È¤³¤³¤Ç¤Ï¸Æ¤Ö¤³¤È¤Ë¤·¤Þ¤¹¡£

¡¡¿Þ£´¡¥£µ¤Ï¡¢È¯»¶É÷¤ÈήÀþ´Ø¿ôÉ÷¤ÎÆó¤Ä¤ÎÉ÷¤ò°ì¤Ä¤Î¿Þ¤ËÉÁ¤­½Ð¤·¤¿¤â¤Î¤Ç¤¹¡£
¥¤¥á¡¼¥¸ 4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£µ¡¡È¯»¶É÷¡ÊÀÖ¤¤Ìð°õ¡Ë¤ÈήÀþ´Ø¿ôÉ÷¡ÊÀĤ¤Ìð°õ¡Ë

¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ë¤è¤ë¤È¤³¤ÎÆó¤Ä¤ÎÉ÷¤Î¹çÀ®¡Ê¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¤È¸Æ¤Ö¤³¤È¤Ë¤·¤Þ¤¹¡Ë¤¬²òÀÏÉ÷¤ËÅù¤·¤¤È¦¤Ç¤¹¡£¿Þ£´¡¥£¶¤Ë²òÀÏÉ÷¤È¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¤ÎÈæ³Ó¿Þ¤ò¼¨¤·¤Þ¤¹¡£

¥¤¥á¡¼¥¸ 5

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£¶¡¡²òÀÏÉ÷¡Ê¹õÌð°õ¡Ë¤È¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¡Êȯ»¶É÷¡ÜήÀþ´Ø¿ôÉ÷¡Ë¡Ê»çÌð°õ¡Ë

¡¡¿Þ£´¡¥£¶¤Ï½é¤á¤Ë²òÀÏÉ÷¤Î¹õ¤¤Ìð°õ¤òÉÁ¤­¡¢¸å¤«¤é¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¤òÉÁ¤­¤Þ¤·¤¿¤Î¤Ç¡¢Á´¤¯Æ±¤¸¤Ç¤¢¤ì¤Ð¡¢»ç¤ÎÌð°õ¤À¤±¤¬»Ä¤ë¤Ï¤º¤Ç¤¹¡£¾¯¤·¹õ¤¤Ìð°õ¤¬¸«¤¨¤ë¾ì½ê¤Ç¤Ï¡¢Î¾¼Ô¤Ë¿¾¯¤Î¸íº¹¤¬Í­¤Ã¤¿¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡£¤¿¤À¤·¡¢¤³¤Î¿Þ¤Ç¤Ï¸íº¹¤¬Ê¬¤«¤ê¤Ë¤¯¤¤¤Î¤Ç¡¢¹¹¤Ë¤³¤Î¸íº¹¤ò¼è¤ê½Ð¤·¤Æ¿Þ£´¡¥£·¤Ë¼¨¤·¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 6

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£·¡¡²òÀÏÉ÷¤È¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¤È¤Î¥Ù¥¯¥È¥ëº¹¤ÎʬÉÛ

¡¡¿Þ£´¡¥£·¤Ç¤Ï»²¹Í¤Î¤¿¤á¤Ë®Å٥ݥƥ󥷥ã¥ë¤ÈήÀþ´Ø¿ô¤ÎÅùÃÍÀþ¤âÆþ¤ì¤Þ¤·¤¿¡£¿Þ£´¡¥£·¤ÎʬÉÛ¤ò¸«¤ë¤È¡¢¸íº¹¤ÎÂ礭¤µ¤ÏÂ礭¤¤¤È¤³¤í¤Ç£µ£í¡¿£ó¼å¤Ç¤¹¡£ÁƤ¤³Ê»ÒÅÀ¥Ç¡¼¥¿¤Ç¤Îº¹Ê¬·×»»¤Ë¤è¤ë¸íº¹¤È¹Í¤¨¤ë¤³¤È¤â½ÐÍè¤Þ¤¹¤Î¤Ç¡¢¤³¤ì¤Ï¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤¬´Ö°ã¤Ã¤Æ¤¤¤ë´°Á´¤Ê¾Úµò¤È¤Ï¸À¤¨¤Ê¤¤¤«¤â¤·¤ì¤Þ¤»¤ó¡£

¡¡¤·¤«¤·¡¢¤¢¤Ê¤¿¤¬Î®ÂÎÎϳؤdzؤó¤À®Å٥ݥƥ󥷥ã¥ë¤ÈήÀþ´Ø¿ô¤ÎÅùÃÍÀþ¤Ïľ¸ò¡Ê¸ß¤¤¤Ëľ³Ñ¤Ë¸ò¤ï¤ë¡Ë¤·¤Æ¤¤¤Þ¤»¤ó¤«¡£¤³¤³¤Ç¼¨¤¹¸½¼Â¤Î¤³¤ì¤éÆó¤Ä¤ÎÅùÃÍÀþ¤Ïľ¸ò¤·¤Æ¤¤¤Þ¤»¤ó¡£

¡¡Ä¾¸ò¤·¤Æ¤¤¤ë¤È¡¢Î㤨¤Ðȯ»¶É÷¤ÏήÀþ´Ø¿ô¤ÎÅùÃÍÀþ¤Ë±è¤Ã¤Æ¿á¤¯¤Î¤Çȯ»¶É÷¤¬Î®Àþ´Ø¿ô¤òÊѤ¨¤ë¤³¤È¤Ï¤¢¤ê¤Þ¤»¤ó¡£¤·¤¿¤¬¤Ã¤ÆÈ¯»¶É÷¤ÏήÀþ´Ø¿ô¤Ë±Æ¶Á¤òÍ¿¤¨¤º¡¢¡ÖÀþ·Á´Ø·¸¤Ë¤¢¤ë¡×¤È¸À¤¨¤ë¤«¤âÃΤì¤Þ¤»¤ó¤¬¡¢¸½¼Â¤ÎʬÉÛ¤Ïľ¸ò¤·¤Æ¤ª¤é¤º¡¢Àþ·Á´Ø·¸¤ËÍ­¤ë¤È¤Ï¸À¤¨¤º¡Ö­¤·»»¤Ç¹çÀ®¡×¤Ï½ÐÍè¤Ê¤¤¤³¤È¤ò¡¢¤³¤Î¿Þ¤Ï¼¨¤·¤Æ¤¤¤Þ¤¹¡£

¡¡¸íº¹¤¬¾®¤µ¤¤¤Î¤Ïȯ»¶É÷¤½¤Î¤â¤Î¤¬¾®¤µ¤¤¤«¤é¤Ç¤¹¡£¿Þ£´¡¥£µ¤ò¤´Í÷²¼¤µ¤¤¡£¸µ¤ÎÉ÷¤òʬ²ò¤·¤Æ¤âÂçȾ¤ÏήÀþ´Ø¿ôÉ÷¤¬Àê¤á¤Æ¤¤¤Þ¤¹¤Î¤Ç¡¢¸íº¹¤Ï¿ô£í¡¿£óÄøÅ٤ˤ·¤«½Ð¤Æ¤­¤Þ¤»¤ó¡£
ȯ»¶É÷¤È¸íº¹¤Î¥ª¡¼¥À¡¼¤òÈæ³Ó¤¹¤ë¤¿¤á¿Þ£´¡¥£¸¤Ë¸íº¹¡Ê²òÀÏÉ÷¡Ý¥Ø¥ë¥à¥Û¥ë¥ÄÉ÷¡Ë¤Èȯ»¶É÷¤ò¼¨¤·¤Þ¤·¤¿¡£
¥¤¥á¡¼¥¸ 7

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¿Þ£´¡¥£¸¡¡Ê¬²òÄêÍý¤Ë¤è¤ë¸íº¹¤Èȯ»¶É÷¤Î¥ª¡¼¥À¡¼¤ÎÈæ³Ó

¡¡É÷¤Îȯ»¶Î̤ÏÂ絤Âç½Û´Ä¤ËÍ¿¤¨¤ë±Æ¶Á¤¬Â礭¤¤¤Î¤Ç¤¹¤¬¡¢À¸¤ÎÉ÷¤ÎÆâ¡¢È¯»¶¤Ë´óÍ¿¤¹¤ëÉ÷¤ÎÀ®Ê¬¤Ï¾®¤µ¤¤¤¿¤á¡¢´Ö°ã¤Ã¤Æ·×»»¤·¤Æ¤â¤½¤Î´Ö°ã¤¤¤Ëµ¤¤¬ÉÕ¤­¤Ë¤¯¤¤¤Î¤Ç¤¹¡£

3. Classification of flows



¡ã3¡Ý1¡ä a irrotational flow(vector)
The rotation of the flow F(=ui+vJ) is given as follow

¢à¡ßF=¢ß£ö¡¿¢ß£ø¡Ý¢ßu¡¿¢ß£ù

So, the characteristic of the irrotational vector(flow)F can be shown by the following expression.

¢à¡ßF=¢ß£ö¡¿¢ß£ø¡Ý¢ßu¡¿¢ß£ù¡á£°¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.1¡Ë

The expression 1) is a necessary and sufficient condition for that there exist some scalar function ¦Ö which is given as below

£ä¦Ö¡á£õ¡¦£ä£ø¡Ü£ö¡¦£ä£ù¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.2¡Ë

That is, not having rotation is a necessary and sufficient condition for that the flow include ¦Ö¡¢that is ¢à¡¦W in (C.4) in the appendix C in the book written by Holton.

¥¤¥á¡¼¥¸ 1


In other wards, you can say that if there exist some rotation in the flow, the flow does not include ¦Ö, or ¢à¡¦W.
¥¤¥á¡¼¥¸ 2


You can get below expression from the definition of the total differential.

£ä¦Ö¡á¢ß¦Ö¡¿¢ß£ø¡¦£ä£ø¡Ü¢ß¦Ö¡¿¢ß£ù¡¦£ä£ù

Then, we can get the following expressions for an irrotational flow.

£õ¡á¢ß¦Ö¡¿¢ß£ø , £ö¡á¢ß¦Ö¡¿¢ß£ù ¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.3¡Ë

Here, you can get the x-component and y-component of the flow by differentiating ¦Ö. So, the function ¦Ö is called Potential velocity.


¡ã3¡Ý2¡ä¡¡a nondivergent flow(vector)
¡¡The divergence of flow F(=ui+vJ) is given as follow,

div F¡á¢ß£õ¡¿¢ß£ø¡Ü¢ß£ö¡¿¢ß£ù

So, the characteristic of the nondivergent flow (vector) F can be shown by the following expression.

div F¡á¢ß£õ¡¿¢ß£ø¡Ü¢ß£ö¡¿¢ß£ù¡á£°

And you can rewrite as below

¢ß£õ¡¿¢ß£ø¡Ý¢ß¡Ê¡Ý£ö¡Ë¡¿¢ß£ù¡á£°¡¡¡¡ ¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.4¡Ë

The expression 3.4) is a necessary and sufficient condition for that there exist some scalar function A and the total differential of it is given as below

£äA¡á£õ¡¦£ä£ø¡Ü(-£ö)¡¦£ä£ù¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.5¡Ë

So, not having divergence is a necessary and sufficient condition for that the flow include scalar function A given with 3.5).

In other wards, if the flow has divergence, there does not exist A.
¥¤¥á¡¼¥¸ 3


Here we consider vector A(0,0. A).

Then ¢à¡ßA = (¢ßA¡¿¢ßy)I -(¢ßA¡¿¢ßx)j.

Where you can put A(c,c,A) instead A(0,0,A). c is constant for space.

Then if scalar A exist, we can consider the vector function A(0,0,A).

¥¤¥á¡¼¥¸ 4


Then, you can say that if there exist some divergences in the flow, the flow does not include A. Then W given in the (c.4) does not exist too.

¡¡And we can get the following equation from the definition of the total differential.

£äA¡á¢ßA¡¿¢ß£ø¡¦£ä£ø¡Ü¢ßA¡¿¢ß£ù¡¦£ä£ù

Then, we can get the following expressions for a nondivergent flow.

£õ¡á¢ßA¡¿¢ßy , -£ö¡á¢ßA¡¿¢ßx ¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦3.6¡Ë

If you draw A on x-y plane, the isolines of A shows the direction of the flow. So A is called stream function.

Have you known the relationship between A and stream function which is given as a scalar function?

¡ã3¡Ý3¡ä¡¡Classification of flows
From the two examinations above-mentioned, all flows can be classified into the following four.
¥¤¥á¡¼¥¸ 5


The first one is nondivergent and irrotational. That flow has ¦Ö and A. That is, the flow has both velocity potentials and the stream functions in itself.

The second one is divergent and irrotational. That flow has only ¦Ö or velocity potentials.

The third one is nondivergent and rotational. That flow has only A or stream function.

And the forth flow is divergent and rotational. That flow does not have neither ¦Ö nor A.

continue

Helmholtz decomposition theorem is wrong

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
There is a theorem called ¡ÈHelmholtz decomposition¡É in Meteorology.

Helmholtz decomposition says that any flow(vector)F can be perfectly decomposed into two flows(vectors). One of them would be an irrotational flow(vector)Ve, and another would be a nondivergent flow(vector)Vr.

that is, F=Vr+Ve

This theorem may be believed in Meteorological Society in the World.

But I can prove this theorem is mathematically wrong.

£±¡¥The proof of Helmholtz decomposition


Helmholtz decomposition states that,

¡¡¡¡¡¡
any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved
¡¡¡¡¡¡into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free)
¡¡¡¡¡¡ vector field;

If you want to prove that any vector F can be resolved into a irrotational vector Ve and a solenoidal vector Vr, you need to find some identity which can be described by like F=Ve + Vr.

As far as I know, the person who has most correctly tried to prove this theorem is James R.Holton.

Holton has tried to prove this theorem in the Appendix of the book "An Introduction to Dynamic Meteorology(first edition)" as follows.
¥¤¥á¡¼¥¸ 1


In this appendix, Holton used V instead F as any flow.
If you could derive (C.1), you might say that Helmholtz decomposition theorem has been certainly proven.

Holton uses ¡ÈThe vector triple product identity¡É to derive (C.3). It is described as follow.
¡Ê£Á¡ß£Â¡Ë¡ß£Ã¡á¡Ý£Á¡Ê£Â¡¦£Ã¡Ë¡Ü£Â¡Ê£Á¡¦£Ã¡Ë

For example, ¡ÈThe vector triple product identity¡É is posted in the next homepage.
(reference:http://en.wikipedia.org/wiki/Triple_product#Proof)

If you replace £Á and £Â with ¢¦, and £Ã with £×, you may get

( ¢¦¡ß¢¦¡Ë¡ß£×=-¢¦(¢¦¡¦£×)+¢¦( ¢¦¡¦£×)

then
you can get (C.3) in Holton¡Çs text. So, you might say that Helmholtz decomposition is perfectly proved.


£²¡¥Collapse of Helmholtz decomposition

Though Holton might have thought there was no problem in the appendix of his book, but (C.2) actually contains the big problem.

Any flow F certainly exist. But £× which is given as (C.2) is not guaranteed to exist. You need to make sure that there exists £× for any flow F.

I mean that there are many flows which do not include W.

I will show you that.

The only expression that guarantees Helmholtz decomposition theorem is the vector triple product identity (C.3).

You have got following expression from the vector triple product identity.
¥¤¥á¡¼¥¸ 2


It is given on terms and conditions as required by
¥¤¥á¡¼¥¸ 3



That is, ¦Ö and A are deriven from the common function W.
If ¦Ö is decided from W, then A should be decided at the same instance.

And, the flow given by ¢¦¡ß A is supposed to exist independently from other flows.

It is called solenoidal flow. That means a flow in the tube. According to Helmholtz Decomposition there exists such a flow.

I do not think that such a solenoidal flow exists in the real world except mathematical world.
If there were such solenoidal flows, I would be able to show the collapses of Helmholtz decomposition.

Assuming that Helmholtz decomposition theorem is correct. you can consider two flows as following.
¥¤¥á¡¼¥¸ 4


¥¤¥á¡¼¥¸ 5


¦Ö1 and A1 are functions which are derived from W1. and, ¦Ö2, and A2 are derived from W2.

Here, because an arbitrary flow (vector function) must be possible , you can consider the flow F3 which includes divergent component of (¢à¡¦¦Ö1) and rotational component of (¢à¡ßA2).
where ¡¡¦Ö1¡á¢¦¡¦£×£±, ¡¡ A2¡á¢¦¡ß£×£²

I must say that again F3 should have (¢à¡¦¦Ö1) as divergent component, and have (¢à¡ßA2) as rorational component.

But according to Helmholtz decomposition, F3 can be decomposed into two flows only by the vector triple product identity (C.3).

Then
¡¡
¥¤¥á¡¼¥¸ 6


where F3 has (¢à¡¦¦Ö3) as divergent component, and have (¢à¡ßA3) as rorational component.
But, because F1¡âF3, and F2¡âF3
¥¤¥á¡¼¥¸ 7


So,
¥¤¥á¡¼¥¸ 8


Here, you must say that F3 which has combined with divergent component of (¢à¡¦¦Ö1) and rotational component of (¢à¡ßA2) can not decomposed into divergent component of (¢à¡¦¦Ö1) and rotational component of (¢à¡ßA2).

So, you have to say that Helmholtz Decomposition have collapsed.

¤Ï¤¸¤á¤Ë
¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ï¡ÖǤ°Õ¤Îή¤ì¡×¤¬¡Ö±²¤Î¤Ê¤¤Î®¤ì¡×¤È¡Öȯ»¶¡ÊÌ©ÅÙÊѲ½¡Ë¤Î̵¤¤Î®¤ì¡×¤ËåºÎï¤Ëʬ²ò¤Ç¤­¤ë¤È¸À¤¦ÄêÍý¤Ç¤¹¡£¤³¤ÎÄêÍý¤Ïµ¤¾Ý³Ø²ñ¤Ê¤É¤Ç¿®¤¸¤é¤ì¤Æ¤¤¤Þ¤¹¤¬¡¢¤³¤ÎÄêÍý¤Ï¿ô³ØÅª¤Ë´Ö°ã¤Ã¤Æ¤¤¤ë¤³¤È¤ò¾ÚÌÀ¤Ç¤­¤Þ¤¹¡£

¡¡»ä¤Ï£²£°£°£±Ç¯¤Ëµ¤¾Ý³Ø²ñ¤Î´ØÀ¾»ÙÉôǯ²ñ¤ËÃÖ¤¤¤Æ¡Öή¤ì¤Îʬ²ò¤Ë¤Ä¤¤¤Æ¡×¤òȯɽ¤·¤Æ°ÊÍ褽¤Î¤³¤È¤ò¸À¤¤Â³¤±¤Æ¤¤¤Þ¤¹¤¬¡¢Ì¤¤À¤ËÍý²ò¤Ç¤­¤ë¿Í¤¬½Ð¤Æ¤­¤Þ¤»¤ó¡£

£±¡¥¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Î¾ÚÌÀ
¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤È¤¤¤¦¤Î¤Ï¡¢Ç¤°Õ¤Î¥Ù¥¯¥È¥ë´Ø¿ôV¤Ï¡Ö±²¤¬Ìµ¤¯È¯»¶¤À¤±¤¬¤¢¤ë¥Ù¥¯¥È¥ë´Ø¿ôA¡×¤È¡¢¡Öȯ»¶¤¬Ìµ¤¯±²¡Ê²óž¡Ë¤À¤±¤¬¤¢¤ë¥Ù¥¯¥È¥ë´Ø¿ôB¡×¤ËåºÎï¤Ë£²¤Ä¤Ëʬ²ò¤Ç¤­¤ë¤È¤¤¤¦ÄêÍý¤Ç¤¹¡£

¡¡¿ô¼°Åª¤Ë¤Ï£Ö¡á£Á¡Ü£Â¤È¸À¤¦É½µ­¤¬¤Ç¤­¤ì¤Ð¡¢£Ö¤Ï£Á¤È£Â¤Ëʬ²ò¤Ç¤­¤ë¤È¸À¤¨¤Þ¤¹¡£¤½¤Î¤¿¤á¤Ë¤Ï¡¢´û¤Ëǧ¤á¤é¤ì¤Æ¤¤¤ë¹±Åù¼°¤Ê¤É¤ÎÃæ¤«¤é£Ö¡á£Á¡Ü£Â¤È¤Ê¤ë¼°¤ò¸«¤Ä¤±¤ëɬÍפ¬¤¢¤ê¤Þ¤¹¡£

¡¡»ä¤ÎÃΤë¸Â¤ê¤Ç¤³¤ÎÄêÍý¤Î¾ÚÌÀ¤òºÇ¤âÀµ¤·¤¯¾ÚÌÀ¤·¤è¤¦¤È¤·¤¿¿Í¤Ï¡¢James¡¡£Ò¡¥Holton¤Ç¤¹¡£¡¡

¡¡£È£ï£ì£ô£ï£î¤Ï¡¢¤½¤ÎÃø½ñ¡ÖAn Introduction to Dynamic Meteorology¡×¤ÎAppendix¤Ç¼¡¤Î¤è¤¦¤Ê¾ÚÌÀ¤ò¤·¤Æ¤¤¤Þ¤¹¡£

¥¤¥á¡¼¥¸ 1

Ǥ°Õ¤Î¥Ù¥¯¥È¥ë´Ø¿ô£Ö¤ËÂФ·¤Æ(C.1)¤Î·Á¤Î¾ÚÌÀ¤¬½Ð¤­¤ì¤Ð³Î¤«¤Ë¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤Ï¾ÚÌÀ¤Ç¤­¤¿¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£

¡¡¥Û¡¼¥È¥ó¤Ï¤½¤Î¤¿¤á¤Ë¥Ù¥¯¥È¥ë¤Î£³½ÅÀѤι±Åù¼°(C.3)¤òÍøÍѤ·¤Æ¤¤¤Þ¤¹¡£(C.3)¤Ë¤Ä¤¤¤Æ¤Ï¡¢Î㤨¤Ð¡Ö±é½¬ ¥Ù¥¯¥È¥ë²òÀϡ׻ûÅÄ¡¦ºäÅÄ¡¦ºØÆ£¶¦Ãø¡¢¥µ¥¤¥¨¥ó¥¹¼Ò¡Ê£±£¹£¹£¹Ç¯È¯¹ÔÈǡˤΥڡ¼¥¸£±£¹£¹¤«¤é¤Ë¼¡¤Î¤è¤¦¤Ê¾ÚÌÀ¤¬¤Ê¤µ¤ì¤Æ¤¤¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 2


¤·¤¿¤¬¤Ã¤Æ¡¢±¦ÊÕÂ裲¹à¤òº¸Êդˡ¢±¦ÊÕ¤òº¸Êդ˰ܹह¤ë¤È
¥¤¥á¡¼¥¸ 3

¤È¤Ê¤ê¡¢£Á¤ò£×¤ËÃÖ¤­´¹¤¨¤ë¤È¡¢£È£ï£ì£ô£ï£î¤Î(C.3)¤ÈƱ¤¸¼°¤Ë¤Ê¤ê¡¢¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤¬¾ÚÌÀ½ÐÍ褿¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£

£²¡¥Î®¤ì¤ÎʬÎà
¡¡°Ê¾å¤Î¾ÚÌÀ¤Ç²¿¤ÎÌäÂê¤â̵¤¤¤è¤¦¤Ç¤¹¤¬¡¢¼Â¤ÏǤ°Õ¤Îή¤ì£Ö¤ò¡Ý¢¦£²£×¤ÇÍ¿¤¨¤Æ¤¤¤ë(C.2)¤¬ÌäÂê¤Ç¤¹¡£

¡¡Holton¤ÏǤ°Õ¤Îή¤ì¤È¸À¤Ã¤Æ¤¤¤Þ¤¹¤¬¡¢Èà¤Î¸À¤Ã¤Æ¤¤¤ëǤ°Õ¤Îή¤ì¤Ï(C.2)¤È¸À¤¦¾ò·ïÉÕ¤ÎÁ´¤¯ÆÃ¼ì¤Êή¤ì¤Ç¤¹¡£¡Ö£²³¬Èùʬ²Äǽ¤ÊϢ³´Ø¿ô£×¤¬Â¸ºß¤·¡¢¤½¤Î¢¦£²¡Ê¡á¥é¥×¥é¥·¥¢¥ó¦¤¡Ë¤Ç£Ö¤¬Í¿¤¨¤é¤ì¤ëή¤ì¤Î¾ì¹ç¤Ë¤Ï¡×¡¢¤È¸À¤¦Â礭¤Ê¾ò·ï¤¬ÉÕ¤¤¤Æ¤¤¤Þ¤¹¡£

¡¡£²³¬Èùʬ²Äǽ¤Ê´Ø¿ô£×¤¬¾ï¤Ë¸ºß¤¹¤ë¤³¤È¤¬¾ÚÌÀ¤Ç¤­¤Ê¤¤¤È¤³¤ÎHolton¤Î¾ÚÌÀ¤Ï´°Á´¤È¤Ï¸À¤¨¤Þ¤»¤ó¡£
£×¤Î¸ºß¤Ë´Ø¤·¤Æ¡¢Î®ÂÎÎÏ³Ø¤ÎÆó¤Ä¤Î´ðÁÃŪ¤ÊÄêÍý¤¬¤¢¤ê¤Þ¤¹¡£

¡¡¤½¤Î£±¤Ä¤Ï¡¢¡Öή¤ì¤Ëȯ»¶¤¬Â¸ºß¤·¤Ê¤¤¤³¤È¤Ï¡¢¤½¤Îή¤ì¤Î¾ì¤Ë¤½¤Î²óž¤¬Î®Â®¤ò¼¨¤¹¥Ù¥¯¥È¥ë´Ø¿ô¤¬Â¸ºß¤¹¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¢¤ë¡£¡×¤È¤¤¤¦ÄêÍý¤Ç¤¢¤ê¡¢¤â¤¦°ì¤Ä¤Ï¡¢¡Öή¤ì¤Ë±²¤¬Â¸ºß¤·¤Ê¤¤¤³¤È¤Ï¡¢¤½¤Îή¤ì¤Î¾ì¤Ë¤½¤Î¸ûÇÛ¤¬Î®Â®¤ò¼¨¤¹¥¹¥«¥é¡¼´Ø¿ô¤¬Â¸ºß¤¹¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¢¤ë¡×¤È¤¤¤¦¤â¤Î¤Ç¤¹¡£

¡¡Î®¤ì¤ÎÆÃÀ­¤ò¸½¤¹ÊªÍýÎ̤ˡֱ²¤ÎʬÉۡפȡÖȯ»¶¤ÎʬÉۡפ¬¤¢¤ê¡¢¤³¤ì¤é¤Î̵ͭ¤Ë¤è¤Ã¤Æ¡¢´ðËÜŪ¤Ë£´¤Ä¤ËʬÎह¤ë¤³¤È¤¬½ÐÍè¤Þ¤¹¡£

¡ã£²¡Ý£±¡ä¡¡±²¤Î¤Ê¤¤Î®¤ì
¡¡±²¤Î¤Ê¤¤Î®¤ì¤Ë¤Ä¤¤¤Æ¡¢£²¼¡¸µ¤Ç¹Í¤¨¤Æ¸«¤Þ¤¹¡£
¡¡±²Å٤Ϣߣö¡¿¢ß£ø¡Ý¢ßu¡¿¢ß£ù¤Ç¸½¤µ¤ì¤Þ¤¹¤Î¤Ç¡¢±²¤Î¤Ê¤¤Î®¤ì¤Ï¡¢

¢ß£ö¡¿¢ß£ø¡Ý¢ßu¡¿¢ß£ù¡á£°¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦£±¡Ë

¤È¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£

¡¡¤³¤Î£±¡Ë¼°¤Ï¡¢¤¢¤ë´Ø¿ô¤¬Â¸ºß¤·¡¢¤½¤ÎÁ´Èùʬ¤¬£õ¡¦£ä£ø¡Ü£ö¡¦£ä£ù¡¡¤Ç¤¢¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¹¡£¤½¤Î´Ø¿ô¤ò¦Ö¤È¤¹¤ë¤È¡¢

£ä¦Ö¡á£õ¡¦£ä£ø¡Ü£ö¡¦£ä£ù¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦£²¡Ë

¤È½ñ¤¯¤³¤È¤¬½ÐÍè¤Þ¤¹¡£

¡¡°ìÈ̤ËÁ´Èùʬ¤È¤Ï¹Í¤¨¤é¤ì¤ëÊý¸þ¤ÎÁ´¤Æ¤ÎÊý¸þ¤ÎÊÐÈùʬ¤Ë¤½¤ÎÊý¸þ¤ÎÈù¾¯ÊѲ½Î̤ò¤«¤±¤¿¥â¥Î¤ÎÁíϤÇɽ¤µ¤ì¤Þ¤¹¤«¤é

£ä¦Ö¡á¢ß¦Ö¡¿¢ß£ø¡¦£ä£ø¡Ü¢ß¦Ö¡¿¢ß£ù¡¦£ä£ù
¡¡¤Ç¤¹¡£
¡¡¡¡½¾¤Ã¤Æ¡¢±²¤Î¤Ê¤¤Î®¤ì¤ÎÀ®Ê¬¤Ï´Ø¿ô¦Ö¤òÍѤ¤¤Æ

£õ¡á¢ß¦Ö¡¿¢ß£ø
£ö¡á¢ß¦Ö¡¿¢ß£ù

¤Èɽ¤¹¤³¤È¤¬½ÐÍè¤Þ¤¹¡£

¡¡±²¤Î¤Ê¤¤Î®¤ì¤Ë¤Ä¤¤¤Æ¤Ï¡¢¥¹¥«¥é¡¼´Ø¿ô¦Ö¤¬Â¸ºß¤·¡¢¤½¤ÎÈùʬ¤Çή¤ì¤Î¾ì¤ò¸½¤¹¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£¤³¤Î¦Ö¤Ï¡¢Holton¤Î¾ÚÌÀ¤Ç¤Ï¡¢(C.4)¤Ë½Ð¤Æ¤¯¤ë¦Ö¤ËÁêÅö¤·¤Þ¤¹¡£

¡¡Î®ÂΤÎÃæ¤Ë±²¤¬Ìµ¤¤¤³¤È¤Ï¡¢¤½¤Îή¤ì¤Ë®Å٥ݥƥ󥷥ã¥ë¤¬Â¸ºß¤¹¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤È¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£½¾¤Ã¤Æ¡¢Î®¤ì¤Ë±²¤¬Í­¤ë¾ì¹ç¤Ë¤Ï¡¢¤½¤ÎÈùʬ¤¬Î®¤ì¤Î®ÅÙ¤ò¸½¤¹¤è¤¦¤Ê´Ø¿ô¤Ï¸ºß¤·¤Ê¤¤¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£

¡ã£²¡Ý£²¡ä¡¡È¯»¶¤¬Ìµ¤¤Î®¤ì
¡¡È¯»¶¤Î¤Ê¤¤Î®¤ì¤Ç¤Ï¡¢£õ¡¤£ö¤ò¤½¤ì¤¾¤ìľ¸ò¤¹¤ë£ø¼´Êý¸þ¤È£ù¼´Êý¸þ¤Îή¤ì¤Î®Å٤Ȥ¹¤ë¤Èȯ»¶Î̤ϡ¢¢ß£õ¡¿¢ß£ø¡Ü¢ß£ö¡¿¢ß£ù¤Ç¸½¤µ¤ì¤Þ¤¹¤«¤é

ȯ»¶ÎÌ¡á¢ß£õ¡¿¢ß£ø¡Ü¢ß£ö¡¿¢ß£ù¡á£°¡¡¡¡¡¡¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦£³¡Ë

¤È¤Ê¤ê¤Þ¤¹¡£¤³¤Î¼°¤Ï½ñ¤­Ä¾¤¹¤È¡¢

¢ß£õ¡¿¢ß£ø¡Ý¢ß¡Ê¡Ý£ö¡Ë¡¿¢ß£ù¡á£°

¤È½ñ¤¯¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£

¡¡¤³¤Î¼°¤Ï¡¢¤¢¤ë´Ø¿ô¤¬Â¸ºß¤·¡¢¤½¤ÎÁ´Èùʬ¤¬¡Ê¡Ý£ö¡Ë¡¦£ä£ø¡Ü£õ¡¦£ä£ù¡¡¤Ç¤¢¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¹¡£¤½¤Î´Ø¿ô¤ò¦Á¤È¤¹¤ë¤È¡¢

£ä¦Á¡á¡Ý£ö¡¦£ä£ø¡Ü£õ¡¦£ä£ù¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦£´¡Ë

¤È½ñ¤¯¤³¤È¤¬½ÐÍè¤Þ¤¹¡£

¡¡°ìÈ̤ËÁ´Èùʬ¤È¤Ï¹Í¤¨¤é¤ì¤ëÊý¸þ¤ÎÁ´¤Æ¤ÎÊý¸þ¤ÎÊÐÈùʬ¤Ë¤½¤ÎÊý¸þ¤ÎÈù¾¯ÊѲ½Î̤ò¤«¤±¤¿¥â¥Î¤ÎÁíϤÇɽ¤µ¤ì¤Þ¤¹¤«¤é¡¢º£¤Î¾ì¹ç¡¢£²¼¡¸µ¡Ê£ø¡¢£ù¡Ë¤Ç¹Í¤¨¤Þ¤¹¤È¡¢

£ä¦Á¡á¢ß¦Á¡¿¢ß£ø¡¦£ä£ø¡Ü¢ß¦Á¡¿¢ß£ù¡¦£ä£ù¡¡¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦¡¦£µ¡Ë

¤È¤Ê¤ê¤Þ¤¹¡£

£´¡ËµÚ¤Ó£µ¡Ë¤è¤ê¡¢È¯»¶¤Î¤Ê¤¤Î®¤ì¤Î³ÆºÂɸÀ®Ê¬¤Ï´Ø¿ô¦Á¤òÍѤ¤¤Æ

¡Ý£ö¡á¢ß¦Á¡¿¢ß£ø
£õ¡á¢ß¦Á¡¿¢ß£ù

¤Èɽ¤¹¤³¤È¤¬½ÐÍè¤Þ¤¹¡£

¡¡¤³¤³¤Ç¡¢¥¹¥«¥é¡¼¦Á¡Ê£ø¡¢£ù¡Ë¤ÎʬÉÛ¤½¤Î¤â¤Î¤Ï¥¹¥«¥é¡¼Î̤Ǥ¹¤¬¡¢¥Ù¥¯¥È¥ë£Á¡Ê£ø¡¢£ù¡¢£ú¡Ë¤Î³ÆÀ®Ê¬¤¬

£øÀ®Ê¬¡á£Á£ø¡á£Ã¡¢
£ùÀ®Ê¬¡á£Á£ù¡á£Ã¡¢
£úÀ®Ê¬¡á£Á£ø¡á¦Á

¤Ç¤¢¤ë¥Ù¥¯¥È¥ë¤ò¹Í¤¨¤Þ¤¹¤È¡Ê£Ã¤ÏÄê¿ô¡Ë
¥¤¥á¡¼¥¸ 4


¡¡¤³¤Î¥Ù¥¯¥È¥ë£Á¤Ï¡¢Holton¤Î¾ÚÌÀ¤Ç¡¢(C.4)¤Ë½Ð¤Æ¤¯¤ë£Á¤ËÁêÅö¤·¤Þ¤¹¡£¤³¤Î£Á¤òήÀþ´Ø¿ô¥Ù¥¯¥È¥ë¤È¸Æ¤Ö¤³¤È¤Ë¤·¤Þ¤¹¡£
¡¡Î®¤ì¤Ëȯ»¶¤¬Ìµ¤±¤ì¤Ð¡Ê¢ß£õ¡¿¢ß£ø¡Ü¢ß£ö¡¿¢ß£ù¡á£°¡Ë¡¢¤½¤Îή¤ì¤ÎÀ®Ê¬¤¬¡Ê¡Ý£ö¡á¢ß¦Á¡¿¢ß£ø¡¢£õ¡á¢ß¦Á¡¿¢ß£ù¡Ë¤ÇÍ¿¤¨¤é¤ì¤ë¤è¤¦¤Ê´Ø¿ô¦Á¤¬Â¸ºß¤·¤Þ¤¹¤¬¡¢Î®¤ì¤Ëȯ»¶¤¬¤¢¤ì¤Ð¤½¤ÎÈùʬ¤¬Î®¤ì¤ò¸½¤¹¤è¤¦¤Ê´Ø¿ô¤Ï¸ºß¤·¤Þ¤»¤ó¡£

¡ã£²¡Ý£³¡ä¡¡Î®¤ì¤ÎʬÎà
¡¡°Ê¾å¤ÎÆó¤Ä¤Îή¤ì¤Î¸¡Æ¤¤«¤é¡¢Î®¤ì¤ò¼¡¤Î£´¤Ä¤ËʬÎह¤ë»ö¤¬¤Ç¤­¤Þ¤¹¡£

¡¡£±¤ÄÌܤϡ¢Î®¤ì¤ÎÃæ¤Ë±²¤âȯ»¶¤â̵¤¤Î®¤ì¤Ç¡¢¤³¤ì¤Ë¤Ï®Å٥ݥƥ󥷥ã¥ë¤ÈήÀþ´Ø¿ô¤¬¶¦¤Ë¸ºß¤·¤Þ¤¹¡££²¤ÄÌܤϡ¢±²¤Î¤ß¤¬¤¢¤Ã¤Æ¡¢È¯»¶¤Î̵¤¤Î®¤ì¤Î¾ì¹ç¤Ç¡¢¤³¤ì¤Ë¤ÏήÀþ´Ø¿ô¤Î¤ß¤¬Â¸ºß¤·¤Þ¤¹¡££³¤ÄÌܤϡ¢È¯»¶¤Î¤ß¤¬¤¢¤Ã¤Æ±²¤Î̵¤¤Î®¤ì¤Î¾ì¹ç¤Ç¡¢¤³¤ì¤Ë¤Ï®Å٥ݥƥ󥷥ã¥ë¤Î¤ß¤¬Â¸ºß¤·¤Þ¤¹¡££´¤ÄÌܤϱ²¤Èȯ»¶¤¬¶¦¤ËÍ­¤ë¾ì¹ç¤Ç¡¢¤³¤ì¤Ë¤ÏήÀþ´Ø¿ô¤â®Å٥ݥƥ󥷥ã¥ë¤â¸ºß¤·¤Þ¤»¤ó¡£¤³¤Îή¤ì¤¬°ìÈÌŪ¤Ç¡¢¥Û¡¼¥È¥ó¤Î¾ÚÌÀ¤Ç´Ø¿ô£×¤¬Â¸ºß¤·¤Ê¤¤Î®¤ì¤¬¸½¼Â¤Ë¤Ï¿¤¯Â¸ºß¤·¤Æ¤¤¤ë¤È¹Í¤¨¤é¤ì¤Þ¤¹¡£

¡¡¤³¤Î¤³¤È¤ò¿Þ¤Ë¼¨¤·¤Þ¤¹¤È²¼¿Þ¤Î¤è¤¦¤Ë¤Ê¤ê¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 5


¡¡½¾¤Ã¤Æ¡¢´ðËÜŪ¤Ë¤Ï¡¢Î®¤ì¤Ë±²¤Èȯ»¶¤Î¤¢¤ë¾ì¹ç¤Ï¡¢¸µ¤Îή¤ì¤òʬ²ò¤¹¤ë¤³¤È¤Ï½ÐÍè¤Þ¤»¤ó¡£

£³¡¥Holton¤¬¾ÚÌÀ¤ÇÍѤ¤¤¿¥Ù¥¯¥È¥ë£³½ÅÀѤΟ³«¤¬¼¨¤·¤Æ¤¤¤ë°ÕÌ£
¡¡¥Ù¥¯¥È¥ë£³½ÅÀѤΟ³«¤Ç¼¨¤·¤Æ¤¤¤ë¿ô¼°¤Î°ÕÌ£¤Ï¡¢¡ÖÈó¾ï¤ËÆÃ¼ì¤Êή¤ì£Ö¤Ï¡¢²óž¤Î¤ß¤Îή¤ì¤Èȯ»¶¤Î¤ß¤Îή¤ì¤Ëʬ²ò¤Ç¤­¤ë¡×¤È¸À¤¦°ÕÌ£¤Ç¤¹¡£

¡¡Èó¾ï¤ËÆÃ¼ì¤Ê¾ì¹ç¤Ë¡¢±²¤Î¤Ê¤¤Î®¤ì¤Èȯ»¶¤Îή¤ì¤Ëʬ²ò¤Ç¤­¡¢±²¤Î¤Ê¤¤¥Ù¥¯¥È¥ë¤Ë¤Ï®Å٥ݥƥ󥷥ã¥ë¤È¤¤¤¦¥¹¥«¥é¡¼¥Ý¥Æ¥ó¥·¥ã¥ë¤¬Â¸ºß¤·¡¢¤½¤Î·¹¤­¡Êgradient¡Ë¤¬±²¤Ê¤·Î®¤ì¡Êȯ»¶¥Ù¥¯¥È¥ëÀ®Ê¬¡Ë¤òɽ¤·¡¢¤â¤¦°ìÊý¤Îȯ»¶¤Î̵¤¤¥Ù¥¯¥È¥ë¤Ë¤ÏήÀþ´Ø¿ô¤È¸À¤¦¥Ù¥¯¥È¥ë¥Ý¥Æ¥ó¥·¥ã¥ë¤¬Â¸ºß¤·¤Æ¡¢¤½¤Î²óž(curl)¤¬È¯»¶Ìµ¤·Î®¤ì¡Ê±²¤Î¤ß¤Î¥Ù¥¯¥È¥ëÀ®Ê¬¡Ë¤òɽ¤¹¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£

¡¡£Ö¡á¡Ý¢¦£²£×¤¬Ç¤°Õ¤Îή¤ì¤À¤È¹Í¤¨¤Æ¤¤¤ë¿Í¤Ë¤â¤¦¾¯¤·ÀâÌÀ¤¤¤¿¤·¤Þ¤·¤ç¤¦¡£
¡¡¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤òÊݾڤ¹¤ëÍ£°ì¤Î¼°¤Ï¥Ù¥¯¥È¥ë¤Î£³½ÅÀѤι±Åù¼°(C.£³)¤Ç¤¹¡£¤³¤Î¼°¤òÍѤ¤¤Æ½é¤á¤Æ
¥¤¥á¡¼¥¸ 6


¤¬ÆÀ¤é¤ì¤Þ¤¹¤¬¡¢¤³¤ì¤Ë¤Ï
¥¤¥á¡¼¥¸ 7


¤È¸À¤¦¾ò·ï¤¬¤¢¤ê¤Þ¤¹¡£¤¹¤Ê¤ï¤Á¦Ö¤â£Á¤â£×¤«¤éÇÉÀ¸¤·¤¿´Ø¿ô¤Ç¡¢¶¦¤Ë£×ͳÍè¤Î´Ø¿ô¤Ç¤¹¡£¦Ö¤È£Á¤È¤ÏÁ´¤¯Ìµ´Ø·¸¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£¶¦¤Ë£×¤«¤éÀ¸¤Þ¤ì¤¿¤â¤Î¤Ç¡¢¦Ö¤¬·è¤Þ¤ì¤Ð£Á¤¬¡¢£Á¤¬·è¤Þ¤ì¤Ð¦Ö¤¬·è¤Þ¤ë¤È¤¤¤¦´Ø·¸¤Ë¤¢¤ê¤Þ¤¹¡£

¡¡°ìÊý¡¢¢¦¡ßA¤ÇÍ¿¤¨¤é¤ì¤ëή¤ì¤Ï¡¢¥½¥ì¥Î¥¤¥À¥ë¤Êή¤ì¤È¸À¤¤¡¢´É¤ÎÃæ¤Îή¤ì¤Î¤è¤¦¤Ë¾¤Îή¤ì¤È°ìÀڴؤï¤ê¤Ê¤¯Î®¤ì¤ë¤È¸À¤¦À­³Ê¤ò»ý¤Ã¤Æ¤¤¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£»ä¤Ï¤½¤ó¤Êή¤ì¤¬¼«Á³³¦¤Ë¸ºß¤¹¤ë¤È¤Ï¹Í¤¨¤Þ¤»¤ó¤¬¡¢º£¤Î¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤ò¼çÄ¥¤¹¤ë¹Í¤¨¤Ç¤Ï¡¢°ìÀڴؤï¤ê¤Î̵¤¤Î®¤ì¤¬Â¸ºß¤¹¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£

¡¡¤À¤È¤¹¤ë¤È¡¢¢¦¡ßA¤È¹çÀ®¤µ¤ì¤ë¢¦¡¦¦Ö¤Ë¤Ä¤¤¤Æ¤¤¤¯¤Ä¤â¤ÎÁȤ߹ç¤ï¤»¤¬¹Í¤¨¤é¤ì¤ë¤Ù¤­¤Ç¤¹¡£¤·¤«¤·¡¢¥Ù¥¯¥È¥ë¤Î£³½ÅÀѤι±Åù¼°(C.£³)¤«¤éƳ¤«¤ì¤¿¢¦¡¦¦Ö°Ê³°¤È¤Ç¤Ï¡¢(C.5)¤ÏÀ®¤êΩ¤Á¤Þ¤»¤ó¡£¤¹¤Ê¤ï¤Á¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤ÏÀ®¤êΩ¤¿¤Ê¤¤ÁȤ߹ç¤ï¤»¤¬¤¤¤¯¤Ä¤Ç¤â¹Í¤¨¤é¤ì¤Þ¤¹¡£

¡¡°Ê¾å¤Ç¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤¬´Ö°ã¤¤¤Ç¤¢¤ë¤³¤È¤Ï¾ÚÌÀ¤µ¤ì¤Æ¤¤¤Þ¤¹¤¬¡¢¤Þ¤Àµ¿Ìä¤Ë»×¤¦¿Í¤Î¤¿¤á¤Ë¡¢¤â¤¦¾¯¤·¶ñÂÎŪ¤ËÎã¤ò¤¢¤²¤Æ¼¨¤·¤Þ¤·¤ç¤¦¡£Î㤨¤Ð¡¢Æó¤Ä¤ÎǤ°Õ¤Îή¤ì¤òV£±¡¢V£²¤È¤·¤Þ¤·¤ç¤¦¡£¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤¬Àµ¤·¤¤¤È¤·¤Æ°Ê²¼¤ÎÆó¤Ä¤Î¼°¤¬ÆÀ¤é¤ì¤Þ¤¹¡£
¥¤¥á¡¼¥¸ 8



¡¡¦Ö£±¡¢A£±¤Ï£×£±¤«¤éƳ¤«¤ì¤¿´Ø¿ô¡¢¦Ö£²¡¢A£²¤Ï£×£²¤«¤éƳ¤«¤ì¤¿´Ø¿ô¤Ç¤¹¡£¥Ù¥¯¥È¥ëÀѤΡߵ­¹æ¤È¥®¥ê¥·¥ãʸ»ú¤Î¦Ö¡Ê¥«¥¤¡Ë¤È¤¬Ê¶¤é¤ï¤·¤¯¤ÆºÑ¤ß¤Þ¤»¤ó¡£

¡¡¤³¤³¤Ç¡¢Ç¤°Õ¤Îή¤ì¡Ê¥Ù¥¯¥È¥ë´Ø¿ô¡Ë¤ÏǤ°Õ¤Î±²À®Ê¬Î®¤ì¡Ê¢¦¡ß£Á¡Ë¤ÈǤ°Õ¤Îȯ»¶À®Ê¬Î®¤ì-¡Ê¢¦¡¦¦Ö¡Ë¤ÎÁȤ߹ç¤ï¤»¤¬²Äǽ¤ÊȦ¤Ç¤¹¤Î¤Ç¡¢¡¡±²¤Ê¤·È¯»¶Î®¤ìÀ®Ê¬¤¬-¡Ê¢¦¡¦¦Ö£±¡Ë¤Ç¡¢È¯»¶Ìµ¤·±²Î®¤ìÀ®Ê¬¤¬¡Ê¢¦¡ß£Á£²¡Ë¤Ç¤¢¤ëή¤ì¤ò¹Í¤¨¤Þ¤¹¡£

¤³¤³¤Ç
¡¡¦Ö£±¡á¢¦¡¦£×£±
¡¡£Á£²¡á¢¦¡ß£×£²
¤Ç¤¹¡£

¡¡¦Ö£±¤È£Á£²¤ÎÁȤ߹ç¤ï¤»¤Ë´Ø¤·¤Æ¤Ï¡¢ (C.3)¤ÏÀ®¤êΩ¤¿¤Ê¤¯¤Ê¤ê¤Þ¤¹¡£(C.3)¤Î±¦Êդ˼¨¤µ¤ì¤Æ¤¤¤ë£×¤ÏÁ´¤¯Æ±¤¸Êª¤Ç¤Ê¤¤¤ÈÀ®¤êΩ¤Á¤Þ¤»¤ó¡£

¡¡¤¹¤Ê¤ï¤Á¹çÀ®¤µ¤ì¤¿Î®¤ìV£³=¡Ý¢¦£²£×3¤òʬ²ò¤Ç¤­¤ë¼°¤Ï¡¢
¥¤¥á¡¼¥¸ 9


¤Î·Á¤·¤«¹Í¤¨¤é¤ì¤º¡¢¤³¤Î»þ£Ö£³¡â£Ö£±¡¤£Ö£³¡â£Ö£²¤Ç¤¹¤«¤é
¥¤¥á¡¼¥¸ 10


¤Ç¤¹¡£
½¾¤Ã¤Æ¡¢
¥¤¥á¡¼¥¸ 11


¤È¤Ê¤ê¤Þ¤¹¡£
¡¡
£Ö£³¤Ï¡¢È¯»¶¤¬¡Ê¢¦¡¦¦Ö£±¡Ë¤Îή¤ì¤È±²¤¬¡Ê¢¦¡ß£Á£²¡Ë¤ÇÍ­¤ëή¤ì¤Î¹çÀ®¤Ç¤¹¤¬¡¢¤½¤Î¹çÀ®¤µ¤ì¤¿Î®¤ì¤Îȯ»¶¤Ï¡Ê¢¦¡¦¦Ö£±¡Ë¤È°Û¤Ê¤ê¡¢±²¤Ï¡Ê¢¦¡ß£Á£²¡Ë¤È°Û¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£
¤³¤ì¤Ï¥Ø¥ë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤¬À®¤êΩ¤Ã¤Æµï¤Ê¤¤¤³¤È¤ò¼¨¤·¤Æ¤¤¤Þ¤¹¡£

¡¡¤³¤ÎÁȤ߹ç¤ï¤»¤Ï¡¢Ìµ¸Â¤Ë¹Í¤¨¤é¤ì¡¢°ìÈ̤˥إë¥à¥Û¥ë¥Ä¤Îʬ²òÄêÍý¤ÏÀ®¤êΩ¤¿¤Ê¤¤¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡£

¡ãÈóÃϹÕÉ÷±¿Æ°¤Ë¤è¤Ã¤Æµ¤°µ¾ì¤¬¶õµ¤²ô¤Ë¤Ê¤¹»Å»öÎÌ¡ä
¶õµ¤²ô¤Ï¡¢ÀŻ߾õÂÖ¤«¤éºÇÂçÉ÷®¤Ç¤¢¤ë­£¤Î¾õÂ֤˻ê¤ë¤Þ¤Ç¤Ë¡¢µ¤°µ·¹ÅÙÎϤˤè¤Ã¤Æ°µ¤µ¤ì¡¢±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÆÀ¤Æ¤¤¤Þ¤¹¡£¤É¤ì¤À¤±¤Î±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÆÀ¤ë¤«·×»»¤·¤Æ¤ß¤Þ¤·¤ç¤¦¡£Ã±°ÌÂÎÀѤζõµ¤²ô¤¬¼õ¤±¤ëÎϤȤ½¤Î°Üưµ÷Î¥¤¬¤â¤é¤¦¡Ö»Å»öÎ̡פǤ³¤ì¤¬±¿Æ°¥¨¥Í¥ë¥®¡¼¤ËÊÑ´¹¤µ¤ì¤Þ¤¹¡£

ÈóÃϹÕÉ÷±¿Æ°¤ò¤¹¤ë¶õµ¤²ô¤ËƯ¤¯ÎϤϡ¢µ¤°µ·¹ÅÙÎϤȥ³¥ê¥ª¥êÎϤΣ²¤Ä¤Ç¤¹¤¬¡¢£²¤Ä¤ÎÎϤΤ¦¤Á¥³¥ê¥ª¥ê¤ÎÎϤϱ¿Æ°Êý¸þ¤Ë¾ï¤Ëľ³Ñ¤Ç¤¹¡£²¡¤·¤Æ¤â¤é¤¦¤³¤È¤Ë¤è¤Ã¤ÆÆÀ¤é¤ì¤ë¡¢¡Ö»Å»öÎ̡פϡ¢¡ÖÎϡסߡֵ÷Î¥¡×¤Ç¤¹¤¬¡¢¤³¤Î¾ì¹ç¤ÎÀÑ¤ÏÆâÀѤȸÀ¤Ã¤Æ¡¢ÎϤγݤ«¤Ã¤Æ¤¤¤ëÊý¸þ¤Ë¤É¤ì¤À¤±°Üư¤·¤¿¤«¤Ç·×»»¤µ¤ì¤Þ¤¹¡£

¡¡¥³¥ê¥ª¥êÎϤϡ¢¤¤¤¯¤éƯ¤¤¤Æ¤¤¤Æ¤â¶õµ¤¤Ë±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÍ¿¤¨¤ë¤³¤È¤Ï½ÐÍè¤Þ¤»¤ó¡£¤³¤ì¤Ï¡¢¥³¥ê¥ª¥êÎϤÎÏäνê¤ÇÏä·¤Þ¤·¤¿¤¬¡¢²óžºÂɸ¾å¤Ç¸«¤ë¿Í¤Î±¿Æ°¤ò²óž¤·¤Æ¤¤¤Ê¤¤ºÂɸ¤ÈƱ¤¸±¿Æ°ÊýÄø¼°¤ò»È¤¦¤¿¤á¤ËÍѤ¤¤¿²¾ÁÛ¤ÎÎϤǤ¢¤Ã¤¿¤³¤È¤ò»×¤¤½Ð¤·¤Æ¤¯¤À¤µ¤¤¡£¼Â¼Á¤ÎÎϤÇ̵¤¤Èᤷ¤µ¤Ç¡¢¤¤¤¯¤éƯ¤¤¤Æ¤â»Å»ö¤È¸«¤Ê¤·¤Æ¤â¤é¤¨¤Þ¤»¤ó¡£¤Þ¤ë¤Ç»ä¤ß¤¿¤¤¡£°ìÀ¸·üÌ¿»Å»ö¤·¤Æ¤¤¤ë¤Ä¤â¤ê¤Ç¤¹¤¬¡¢Ã¯¤âǧ¤á¤Æ¤¯¤ì¤Þ¤»¤ó¡£

¡¡¤È¸À¤¦¤³¤È¤Ç¡¢¼Â¼Á¶õµ¤¤Ë±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÍ¿¤¨¤ë¤³¤È¤¬½ÐÍè¤ë¤Î¤Ï¡¢µ¤°µ·¹ÅÙÎϤÀ¤±¤Ç¡¢¤½¤ÎÂ礭¤µ¤Ïµ¤°µ·¹ÅÙÎϤȱ¿Æ°Êý¸þ¤ÎÆâÀѡʵ¤°µ·¹ÅÙÎϤΥ٥¯¥È¥ë¤È®Å٥٥¯¥È¥ë¤È¤Î¤Ê¤¹³Ñ¤ò¦È¤È¤¹¤ë¤È¡¢ÆâÀѤϦѡ¦£ç¡¦¢ß£è¡¿¢ß£î¡¦£ö¡¦£ã£ï£ó¦È¤È¤Ê¤ê¤Þ¤¹¡£

¥¤¥á¡¼¥¸ 1


¡¡¤³¤ÎÃͤϵ¤°µ·¹ÅÙÎϦѡ¦£ç¡¦¢ß£è¡¿¢ß£î¡¡¤È¡¢£ö¡¦£ã£ï£ó¦È¤Î¤«¤±»»¤Ç¤¹¡££ö¡¦£ã£ï£ó¦È¤Ï¡¢¤½¤ÎÉ÷®¥Ù¥¯¥È¥ë¤Ç¤É¤ì¤À¤±¹âÅÙ¤ò¹ß¤ê¤Æ¤¤¤Ã¤¿¤«¡¢¤È¸À¤¦ÃͤǤ¹¤«¤é¡¢'µ¤°µ·¹ÅÙÎÏ'¤È'ñ°Ì»þ´Ö¤ËÅù¹âÀþ¤ò¹ß¤ê¤¿¹âÅÙº¹'¤ÎÀѤ¬¡¢¤³¤Î¶õµ¤²ô¤¬µ¤°µ·¹ÅÙÎϤ«¤éÆÀ¤¿»Å»öÎ̤ˤʤê¤Þ¤¹¡£

¡¡¤³¤Î·×»»¤ò­¡¤«¤é­£¤Þ¤ÇÀÑʬ¤¹¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£
¤Ç¤¹¤«¤é¡¢Í¿¤¨¤é¤ì¤ë»Å»öÎ̤ϡ¡

¥¤¥á¡¼¥¸ 2


¡¡¡¡¡¡¡á¦Ñ¡¦£ç¡Ê­¡¤Î¹âÅÙ¡Ý­£¤Î¹âÅÙ¡Ë
¤³¤³¤Ç¡¢¦Ñ¤Ï¶õµ¤Ì©ÅÙ¡¢£ç¤Ï½ÅÎϤβîÅÙ¡¢£è¤ÏÅù°µÌ̤ιâÅÙ¡¢£î¤Ï¹âÅ٤κÇÂç¼ÐÌÌÊý¸þ¤Îñ°Ì¥Ù¥¯¥È¥ë¡¢£ó¤Ï¶õµ¤²ô¤Îµ°À×Êý¸þ¤Îñ°Ì¥Ù¥¯¥È¥ë¤Ç¤¹¡£

¤³¤Î»Å»öÎ̤¬±¿Æ°¥¨¥Í¥ë¥®¡¼£±¡¿£²¡¦¦Ñ¡¦£ö£²¤È¤Ê¤ê¤Þ¤¹¡£

¡¡¤¹¤Ê¤ï¤Á¡¢¡¡£±¡¿£²¡¦¦Ñ¡¦£ö£²¡á¦Ñ¡¦£ç¡Ê­¡¤Î¹âÅÙ¡Ý­£¤Î¹âÅ١ˤȤʤꡢ¤³¤ì¤Ï¡¢¤Þ¤µ¤Ë¡¢¿¶¤ê»Ò¤Î½é´üÀŻ߰ÌÃ֤ȺDz¼ÅÀ¤Ç¤Î°ÌÃ֤κ¹¤È¡¢ºÇ²¼ÅÀ¤Ë¤ª¤±¤ë®Å٤δط¸¤ÈƱ°ì¤Ë¤Ê¤ê¤Þ¤¹¡£

¡¡¤¹¤Ê¤ï¤Á¡¢ÈóÃϹÕÉ÷±¿Æ°¤ò¹Ô¤¦¶õµ¤²ô¤Ï¡¢µ¤°µ·¹ÅÙÎϤ˲¡¤µ¤ì¤Æ±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÆÀ¤Þ¤¹¤¬¡¢¤³¤Î¥¨¥Í¥ë¥®¡¼¤Ï¤½¤Î´Ö¤ËÅù°µÌ̤ò²¼¹ß¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¼º¤¦°ÌÃÖ¥¨¥Í¥ë¥®¡¼¤ËÁêÅö¤·¤Æ¤¤¤Þ¤¹¡£¸À¤¤´¹¤¨¤ì¤Ð¡¢Åù°µÌ̾å¤ò±¿Æ°¤·¡¢¹âÅÙ¤ò²¼¤²¤ë¤³¤È¤Ë¤è¤ê¡¢É÷®¤òÆÀ¤Æ¤¤¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£



¡ãĶÃϹÕÉ÷­£¤Î¾õÂ֤ˤĤ¤¤Æ¡ä
ÈóÃϹÕÉ÷±¿Æ°¤ÇºÇ¤âÉ÷¤¬¶¯¤¯¤Ê¤ë¾õÂ֤ˤĤ¤¤Æ¹Í»¡¤·¤Æ¤ß¤Þ¤¹¡£

¥¤¥á¡¼¥¸ 3


¿Þ£±£±¡¥£¹¤Ï­£¤Î¾õÂ֤ˤª¤±¤ë®Å٤ȳݤ«¤Ã¤Æ¤¤¤ëÎϤò¼¨¤·¤¿¿Þ¤Ç¤¹¡£

¡¡¤³¤³¤ËÍè¤ë¤Þ¤Ç¤Ï¡¢µ¤°µ·¹ÅÙÎϤˤè¤Ã¤Æ¹âÅ٤ι⤤Êý¤«¤éÄ㤤Êý¤Ë²£ÀÚ¤ë¤è¤¦¤ÊÉ÷¸þ¤Ç¡¢¹âÅÙ¤ò¹ß¤ê¤ÆÍè¤Þ¤·¤¿¤¬¡¢¥³¥ê¥ª¥êÎϤˤè¤Ã¤Æ¼¡Âè¤Ë±¦¤Ë¸þ¤­¤ò¶Ê¤²¤é¤ì¡¢¤Ä¤¤¤ËÅù¹âÀþ¤ËÊ¿¹Ô¤Ë¤Ê¤ê¤Þ¤·¤¿¡£¤³¤Î¾õÂ֤ϡ¢¿¶¤ê»Ò¤Ç¤Ï¡¢ºÇ²¼ÅÀ¤ÇÈ¿ÂÐÊý¸þ¤ËÀª¤¤¤è¤¯±¿Æ°¤·¤Æ¾õÂÖ¤ÈÆ±¤¸¤Ç¤¹¡£¤³¤Î¾õÂÖ¤ò¿Þ£±£±¡¥£±¤Ç¼¨¤·¤¿ÈóÃϹÕÉ÷±¿Æ°¤ò¹Ô¤¦¶õµ¤²ô¤Îµ°Àפȿ¶¤ê»Ò¤Î´Ø·¸¤Ç¼¨¤¹¤È¿Þ£±£±¡¥£±£°¤ÎÍͤˤʤê¤Þ¤¹¡£Ã¢¤·¡¢¿Þ¤Î²¼Â¦¤ò¹âÅÙ¤¬¹â¤¤Êý¤ËÉÁ¤­¤Þ¤¹¤È¡¢¿¶¤ê»Ò¤ÏµÕ¤µ¸þ¤¤¤¿³¨¤Ë¤Ê¤Ã¤Æ¾¯¤·¸«¤Ë¤¯¤¯¤Ê¤ê¤Þ¤¹¡£²¼¤«¤é¾å¤ËÄߤ겼¤²¤¿¡©¿Þ¤È¤·¤Æ¤´Í÷²¼¤µ¤¤¡£

¥¤¥á¡¼¥¸ 4


¡¡¤³¤Î¾õÂ֤ǤÎÉ÷®¤Ï¡¢·×»»¤Ë¤è¤ë¤ÈÃϹÕÉ÷¤Î£²ÇܤήÅ٤ˤʤäƤ¤¤Þ¤¹¡£¥³¥ê¥ª¥êÎϤÏÉ÷®¤ËÈæÎ㤷¤Þ¤¹¤«¤é¡¢µ¤°µ·¹ÅÙÎϤǡ¢¹âÅ٤ι⤤Êý¤«¤éÄ㤤Êý¤Ë³Ý¤«¤ëÎϤΣ²ÇܤÎÎϤ¬¡¢¿¿È¿ÂФÎÊý¸þ¡¢¤Ä¤Þ¤ê¡¢¹âÅÙ¤ÎÄ㤤Êý¤«¤é¹â¤¤Êý¤Ë¸þ¤«¤Ã¤ÆÆ¯¤­¤Þ¤¹¡£·ëÏÀŪ¤Ë¤Ï¡¢µ¤°µ·¹ÅÙÎϤȥ³¥ê¥ª¥êÎϤιçÎϤϡ¢ÃúÅÙ¡¢µ¤°µ·¹ÅÙÎϤÎÂ礭¤µ¤Ç¡¢µ¤°µ·¹ÅÙÎϤ˵ոþ¤­¤ËƯ¤¤¤Æµï¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£


¡ã±¿Æ°¥¨¥Í¥ë¥®¡¼¤ò»È¤Ã¤Æ¹âÅÙ¤ò¾å¤ë¡ä

¡¡­£¤ò²á¤®¤ë¤È¡¢¸þ¤­¤Ï¹¹¤ËÂ礭¤ÊÎϤDZ¦¤Ë¸þ¤­¤òÊѤ¨¤é¤ì¤ë¤è¤¦¤ËÎϤ¬³Ý¤«¤ê¡¢ºäÆ»¤ò¾å¤ê»Ï¤á¤Þ¤¹¡£¤³¤ì¤Þ¤Ç¤Ï¡¢¹âÅÙ¾ì¤ò¹ß¤ê¤Æ¤­¤Þ¤·¤¿¤¬¡¢¤½¤·¤Æ¡¢¤½¤Î¤³¤È¤Ï®Å٤ȼºݤÎÎϤǤ¢¤ëµ¤°µ·¹ÅÙÎÏ¤ÎÆâÀѤ¬Àµ¤Ç¤¢¤ê¤Þ¤·¤¿¡£¤Ä¤Þ¤ê¡¢¶õµ¤²ô¤Ïµ¤°µ·¹ÅÙÎϤ˥¨¥Í¥ë¥®¡¼¤ò¤â¤é¤Ã¤Æ¤­¤Þ¤·¤¿¤¬¡¢ºäÆ»¤ò¾å¤ë¤³¤È¤Ïµ¤°µ·¹ÅÙÎϤθþ¤­¤È±¿Æ°Êý¸þ¤ÎÆâ³Ñ¤¬£¹£°Åٰʾå¤È¤Ê¤ê¡¢¥Þ¥¤¥Ê¥¹¤Ë¤Ê¤ê¤Þ¤¹¡£

¡¡¸À¤¤´¹¤¨¤ë¤È¡¢µ¤°µ·¹ÅÙÎϤ˵դé¤Ã¤Æ±¿Æ°¤¹¤ë»ö¤Ë¤Ê¤ê¤Þ¤¹¡£±¿Æ°¥¨¥Í¥ë¥®¡¼¤ò¾ÃÈñ¤·¤Ê¤¬¤é°ÌÃ֤Υ¨¥Í¥ë¥®¡¼¤òÆÀ¤ë¡¢¤¹¤Ê¤ï¤Á¹âÅÙ¤òÅФ뤳¤È¤Ë¤Ê¤ê¤Þ¤¹¡£¼¡Âè¤Ë®ÅÙ¤ÏÍî¤Á¤Æ¤­¤Þ¤¹¤¬¡¢¹âÅ٤Ϲ⤯¤Ê¤Ã¤Æ¡¢¸µ¤Î¹âÅ٤ޤǾå¤Ã¤Æ»ß¤Þ¤Ã¤¿¾õÂÖ¤¬¡¢¿Þ£±£±¡¥£²¡Á¿Þ£±£±¡¥£¶¤Ë¼¨¤µ¤ì¤¿­¥¡¢¤¹¤Ê¤ï¤Á­¡¤Î¾õÂ֤Ǥ¹¡£


¡ãÈóÃϹÕÉ÷¤ÈÅù¹âÀþ¤Î´Ø·¸¡ä

¡¡ÈóÃϹÕÉ÷¤¬Åù¹âÀþ¤ò¹âÅ٤ι⤤Êý¤«¤éÄ㤤Êý¤Ë²£ÀÚ¤ë¾ì¹ç¤Ï¡¢ÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤Ï¡¢É¬¤ºÈóÃϹÕÉ÷¤Î¸þ¤­¤Îº¸Â¦¤ò¸þ¤¤¤Æ¤¤¤Þ¤¹¡£

Î㤨¤Ð¡¢¿Þ£±£±¡¥£²¤ÇÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤Î²óž¤ÎÆâ¡¢¾åȾʬ¤Î²óÅ¾Ãæ¤ÏÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤Ï¡¢ÈóÃϹÕÉ÷¤ËÂФ·¤Æ¤â¡¢ÃϹÕÉ÷¤ËÂФ·¤Æ¤â¡¢º¸Â¦¤ò¸þ¤¤¤Æ¤¤¤Þ¤¹¡£¤·¤¿¤¬¤Ã¤Æ¡¢¡ÖÈóÃϹÕÉ÷À®Ê¬¤ÎƯ¤­¡×¤Ç¸«¤Æ¤­¤¿¤è¤¦¤Ë¤½¤ÎÈóÃϹÕÉ÷¤ò²ÃÂ®Ãæ¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡£¤³¤ì¤Ï¡¢¹âÅÙ¤ò²¼¤²¤Ê¤¬¤é¿Ê¤ó¤Ç¤¤¤ë¶õµ¤¤¬°ÌÃ֤Υ¨¥Í¥ë¥®¡¼¤ò¾ÃÌפ·¡¢¤½¤ÎÂå¤ï¤ê±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÆÀ¤Æ¤¤¤ë¤³¤È¤ò°ÕÌ£¤·¤Æ¤¤¤Þ¤¹¡£

¡¡¤³¤Î¤³¤È¤Ï¡¢Å·µ¤¿Þ¾å¤ÇÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤¬Åù¹âÀþ¤ËÂФ·¤Æ¹â¤¤Êý¤«¤éÄ㤤Êý¤Ë¿á¤¤¤Æ¤¤¤ë¾ì¹ç¤Ï²ÃÂ®Ãæ¡¢µÕ¤Ë¹âÅÙ¤ÎÄ㤤Êý¤«¤é¹â¤¤Êý¤Ë¸þ¤«¤Ã¤Æ¤¤¤ë¾ì¹ç¤Ï¡¢¸ºÂ®Ãæ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£

¡¡°Ê¾å¤Ï¡¢ÂçÃÀ¤Ê²¾Àâ¤ò¤ª¤¤¤Æ¤¤¤Þ¤¹¤Î¤Ç¡¢¸½¼Â¤¬¤É¤¦¤Ê¤Ã¤Æ¤¤¤ë¤«¤Ï¡¢¼ÂºÝÎã¤ò¸«¤Ê¤¬¤é¡¢ÈóÃϹÕÉ÷Ū¤Ê¸½¾Ý¤¬¤É¤Î¤è¤¦¤Ë¸«¤é¤ì¤ë¸¡Æ¤¤¹¤ëɬÍפ¬¤¢¤ê¤Þ¤¹¡£ÈóÃϹÕÉ÷¤¬¤É¤Î¤è¤¦¤Ê¤â¤Î¤Ç¤¢¤ë¤«ÃΤäƤª¤«¤Ê¤¤¤È¡¢ÃϹÕÉ÷¤À¤±¤ÎÃμ±¤Ç¤Ï¡¢Àµ¤·¤¤²ò¼á¤¬½ÐÍè¤Ê¤¤¾ì¹ç¤¬Â¿¤¤¤Ç¤¹¡£

¡¡¼ÂºÝÎã¤Î°ì¤Ä¤È¤·¤Æ¡¢¿Þ£±£±¡¥£±£±¤ò¼¨¤·¤Þ¤¹¡£Æ±¿Þ¤Ï¡¢£²£°£°£²Ç¯£³·î£²£³Æü£±£²£Ú¤ÎÎã¤Ç¤¹¡£ºÙ¤¤¼ÂÀþ¤¬Åù¹âÀþ¤Ç¡¢¡ÊÀÖ¤¤¡ËÌð°õ¤¬ÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤Ç¤¹¡£¡Ê»ç¿§¤Î¡ËÇËÀþµÚ¤ÓÂÀÀþ¤ÏÅùÉ÷®Àþ¤ÇÂÀÀþ¤Ï£¸£°m/s¤ÎÅùÉ÷®Àþ¤ò¼¨¤·¤Æ¤¤¤Þ¤¹¡£¶¯É÷¼´¤òÀèü¤ËÌð¤ÎÉÕ¤¤¤¿¶ÊÀþ¤Ç¸½¤·¤Æ¤¤¤Þ¤¹¡£Æî¦¤Ë°ú¤«¤ì¤¿¤â¤Î¤¬¡¢¤¤¤ï¤æ¤ë¥µ¥Ö¥¸¥§¥Ã¥È¤Ç¤¹¡£Ë̦¤Î¶¯É÷¼´¤Ë¤Ä¤¤¤ÆËؤÉÀâÌÀ¤ò¤·¤Æ¤¤¤Þ¤»¤ó¤¬¡¢¤³¤ì¤Ï¤¤¤ï¤æ¤ë¶Ë¥¸¥§¥Ã¥È¤È¹Í¤¨¤é¤ì¤Þ¤¹¡£

¥¸¥§¥Ã¥È¤ÎºÇÂç°è¤è¤êÀ¾Â¦¡ÊÉ÷¾å¦¡Ë¤Ç¤Ï¡¢ÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤¬¹âÅ٤ι⤤Æî¤«¤éË̸þ¤­¤Ë¤Ê¤Ã¤Æ¤ª¤ê¡¢ºÇÂç°è¤ÎÅ즡ÊÉ÷²¼Â¦¡Ë¤Ç¤Ï¡¢ÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤¬¹âÅÙ¤ÎÄ㤤Ë̤«¤é¹â¤¤Æî¤ò¸þ¤¤¤Æ¤¤¤Þ¤¹¡£¥µ¥Ö¥¸¥§¥Ã¥È¤ÎÀ®°ø¤Ë¤Ä¤¤¤Æ¤Ï´û¤Ë¸¡Æ¤¤·¤Æ¤¤¤Þ¤¹¤¬¡¢¤³¤Î¿Þ¤Ç¤â¡¢ÈóÃϹÕÉ÷À®Ê¬¥Ù¥¯¥È¥ë¤Ë¤è¤ë²Ã®µÚ¤Ó¸ºÂ®¤Î¸ú²Ì¤¬¥¸¥§¥Ã¥È¤Î°ÌÃÖ¤ò·èÄꤷ¤Æ¤ª¤ê¡¢¥µ¥Ö¥¸¥§¥Ã¥È¤ÎÀ®°ø¤È¤·¤ÆÈóÃϹÕÉ÷¤ò¾å¤²¤ë¤³¤È¤ÎÂÅÅöÀ­¤¬¼¨¤µ¤ì¤Æ¤¤¤Þ¤¹¡£


¤è¤·¤â¤È¥Ö¥í¥°¥é¥ó¥­¥ó¥°

¤â¤Ã¤È¸«¤ë

[PR]¤ªÆÀ¾ðÊó

¤¤¤Þ¤Ê¤é¤â¤é¤¨¤ë¡ª¥¦¥£¥¹¥Ñ¡¼£×¥¬¡¼¥É
Çö¤¤¤·¥â¥ì¤òËɤ°¥Ñ¥ó¥Æ¥£¥é¥¤¥Ê¡¼
ÏÃÂê¤Î¿·À½Éʤò10,000̾Íͤ˥ץ쥼¥ó¥È
¤Õ¤ë¤µ¤ÈǼÀÇ¥µ¥¤¥È¡Ø¤µ¤È¤Õ¤ë¡Ù
11¡¿30¤Þ¤Ç£µ¼þǯµ­Ç°¥­¥ã¥ó¥Ú¡¼¥óÃæ¡ª
Amazon¥®¥Õ¥È·ô1000±ßʬÅö¤¿¤ë¡ª
¤¤¤Þ¤Ê¤é¤â¤é¤¨¤ë¡ª¥¦¥£¥¹¥Ñ¡¼¤¦¤¹¤µ¤é
Çö¤¤¤·¥â¥ì¤òËɤ°Ç¢¥±¥¢¥Ñ¥Ã¥É
ÏÃÂê¤Î¿·À½Éʤò10,000̾Íͤ˥ץ쥼¥ó¥È

¤½¤Î¾¤Î¥­¥ã¥ó¥Ú¡¼¥ó


¤ß¤ó¤Ê¤Î¹¹¿·µ­»ö